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Abstract
Classical notions of fractal dimension measure the size of sets based on their covering
properties. In a similar vein, algorithmic information theory defines the effective dimension
of a point in terms of its ability to be covered to arbitrary precision following an effective
procedure. The Point-to-Set Principles of J. Lutz and N. Lutz formalize the connection
between certain classical fractal dimensions and effective dimensions, enabling the use
of algorithmic techniques to prove results in geometric measure theory. While these
connections have led to fruitful developments, the full relationship between algorithmic
information theory and geometric measure theory remains incompletely understood, and
an active dialogue has emerged between the two communities.

This dissertation contributes to that dialogue by deepening the theoretical connections
in several directions.

We begin by reviewing the various approaches to algorithmic information theory via
randomness tests, incompressibility, and mass distribution. We highlight the relevant
relationships between these approaches, and discuss how they characterize certain fractal
dimension notions in a pointwise manner.

We move on to demonstrate the robustness of certain complexity and effective
dimension notions over Euclidean space. Many variants of Kolmogorov complexity satisfy
a symmetry of information, or chain rule. In symbols, the chain rule takes the form
K(a, b) ≈ K(a) +K(b | a), where a and b are considered to be finite binary strings, and
approximate equality holds up to sub-linear terms in their lengths. Here, K(b | a) denotes
the conditional complexity of b given a. The chain rule plays an essential role in most
applications of algorithmic information theory, and, to some extent, has been extended to
Euclidean space. We prove a general chain rule for the usual lift of conditional, prefix-free
Kolmogorov complexity to Euclidean space. And we discuss multiple senses in which
this complexity notion is robust, including that conditional effective Hausdorff dimension
is invariant under bi-computable, bi-Lipschitz continuous transformations.

Next, we identify for real maps some weaker continuity conditions under which both
prefix-free Kolmogorov complexity and effective dimension behave well. This involves
extending the results of N. Lutz and D. Stull bounding from the below the effective
dimension of points along the graphs of planar lines. We introduce a function family which
we term a computable absolutely Lipshcitz family (CALF) which admits a similar result for
the effective dimension of points along their graphs. In fact, the effective dimension result
is viewed as the limit of an analogous statement regarding the Kolmogorov complexity
on finitary inputs. We deduce a result about the dimension spectrum for the graphs of
functions from a CALF.
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Later, we extend foundational results in algorithmic information theory to a broad
class of metric spaces that admit nets in the sense of D. Larman, C. Rogers, and R. Davies.
Net spaces were partially introduced in order to extend beyond Euclidean space a result
by A. Besicovitch related to finding inside any compact set of infinite measure a compact
subset of non-zero, finite measure. Besicovitch’s proof made essential use of the countable
collection of dyadic cubes over Euclidean space, but the method is workable over more
general nets. We extend algorithmic information theory to net spaces by recreating
several optimality results for semimeasures and outer measures, extending complexity
notions, confirming various effective dimension coincidences, and deducing point-to-set
principles for both Hausdorff dimension and the Hausdorff outer measures. We also
discuss examples of net spaces, such as compact metric spaces and Polish spaces, and
their effectivizations.

Finally, we apply these tools to prove both new and existing results in classical
geometric measure theory. We use Kolmogorov complexity to prove two results essential
to T. Orponen’s combinatorial proof of the Marstrand-Mattila Projection Theorem
under the assumption that Hausdorff and packing dimensions agree. Incompressibility
arguments also prove a simple bound on Hausdorff dimension under locally-Lipschitz
transformations. We apply this bound over several geometries, producing some modest
bounds on the Hausdorff dimension of both orthogonal and radial projections. We also
obtain a density result over net spaces under some modest assumptions, which implies
an analog of Besicovitch’s result on the existence of compact subsets of non-zero, finite
measure.
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Chapter 1 |
Introduction

1.1 Introduction
This dissertation concerns the application of algorithmic information theory (AIT) to
geometric measure theory (GMT). This investigation builds on the mounting evidence
that mathematics under algorithmic restrictions offers insights into–and refinements
to–the study of the fractal properties of sets.

The origins of algorithmic information theory began in the 1960s with the formalization
of Solomonoff induction: a rule for selecting an hypothesis for the source from which
some given data was produced. The rule substitutes a non-computable, universal
prior distribution into Bayes’ rule, and rewards algorithmically-simpler explanations [61].
R. Solomonoff’s conception of information content is most closely related to the algorithmic
probability of producing a piece of data with respect to a universal Turing machine.

An independent origin came just a few years later when A. Kolmogorov defined the
algorithmic (plain) complexity of individual objects, thereby refining the concept of
classical Shannon information which only describes the mean information content across
a distribution [25,26]. So, Kolmogorov’s concept of information content was based on
the degree of incompressibility with respect to a universal Turing machine.

And shortly after, G. Chaitin also independently introduced plain complexity and
established its symmetry of information property, as well as establishing some initial
notions of algorithmic randomness for infinite binary strings based on attaining maximal
complexity along their prefixes [7].

P. Martin-Löf characterized algorithmic randomness for an infinite binary sequence
instead as the inability to cover it to arbitrary precision by effectively open statistical
tests [42]. This adjusted A. Church’s original attempt: computable randomness, meant
to achieve the intuitive property due to von Mises that random sequences ought to pass
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all standard statistical tests such as the Law of Large Numbers.
C. Schnorr showed that both Chaitin’s and Martin-Löf’s notions of algorithmic

randomness for infinite binary sequences were equivalent to yet another: those sequences
on which any effective betting strategy (i.e., constructive martingale) would fail to generate
arbitrary gains when betting on subsequent bits [58]. Thus, what is now commonly
known as Martin-Löf randomness is considered robust for its equivalent characterizations
in terms of Chaitin’s notion of incompressibility, Martin-Löf’s notion of typicality, and
Schnorr’s notion of unpredictability.

Moreover, L. Levin confirmed the equivalence between Solomonoff, Kolmogorov, and
Chaitin’s approaches to quantifying algorithmic information content [28]. Levin’s Coding
Theorem equated Solomonoff’s universal prior with 2−K(·), where K(·) denotes prefix-free
or self-delimiting Kolmogorov complexity, or the minimal description-length of some data
with respect to a universal, prefix-free Turing machine.

Whether viewed as the branch of theoretical computer science dedicated to the
properties of computably-generated objects, or as a refinement of classical Shannon
information theory by measuring the information content of individual objects, or as
a project to formalize randomness: algorithmic information theory clearly offers some
extra structure to otherwise “classical” mathematics, or the mathematics unconstrained
by effectivity.

Just as any natural, geometric object has an assignable geometric dimension that
corresponds to the right “exponential factor” by which to measure its volume, the goal
of many fractal dimension notions is to assign to a set an exponent appropriate to its
geometry [10]. For instance, the Hausdorff dimension of a set is roughly defined as the
critical value of s for which the volume of the set as measured using exponent s switches
from being infinite to null. Thus, Hausdorff dimension is naturally associated to the
family of s-dimensional Hausdorff outer measures Hs (defined in Section 1.3). These
outer measures refine Lebesgue measure on null sets based on their covering properties.
Yet, a further refinement to Hs-nullness is exhibited by partial randomness.

Generalizing the constructive martingales of Schnorr, J. Lutz introduced constructive
s-supergales, where s ≥ 0 is a dimension parameter [31]. Whenever a constructive
s-supergale could make arbitrary gains betting on the subsequent bits of a given sequence
(i.e., succeed on the sequence), then that sequence would not be considered random with
respect to s. Then, Lutz defined the constructive dimension of a sequence to roughly be
the minimal s on which some constructive s-supergale could succeed.

Shortly after, E. Mayordomo elucidated the relationship between Lutz’s constructive
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dimension and Kolmogorov complexity. In particular, the constructive dimension of a
sequence matches L. Staiger’s limit inferior of the normalized Kolmogorov complexities
of the sequence’s prefixes [45,63].

Both Lutz’s and Mayordomo’s contributions were built on decades of prior work
toward understanding Kolmogorov complexity, including bounds on plain complexity
by Shannon entropy [62], as well as work by both B. Ryabko [56, 57] and Staiger [64]
partially relating the limit inferior of the normalized Kolmogorov complexity of prefixes
to the speed at which a computable martingale could make arbitrary gains on a given
sequence.

Generalizing the work of Schnorr and Chaitin, K. Tadaki introduced notions of
Martin-Löf tests and partial randomness tailored to a dimension parameter s ≥ 0
[68], which in turn provided yet another characterization of constructive dimension
as roughly the minimal value of s for which a set could be covered by one of these
tests. Thus, this effective notion of dimension serves as a refinement to Martin-Löf
randomness, and similarly may be characterized in terms of incompressibility, typicality,
and unpredictability.

In effect, effective dimension quantifies just how random a sequence behaves in the
limit. In particular, it is possible for singleton sets to have nonzero effective dimension
(in fact, most have full effective dimension). These would correspond to points which are
not covered by a Martin-Löf-test appropriate for some dimension s > 0; or, equivalently,
those admitting highly incompressible prefixes; or, those on which any constructive
s-supergale would not succeed at making arbitrary gains for some s > 0.

In the recent past, computability theorists and geometric measure theorists alike
have used some notions of effective dimension to prove classical results about the fractal
dimension of certain sets. The so-called Point-to-Set Principles by J. Lutz and N. Lutz
have almost always served as the bridge between effective and “classical” results about
Hausdorff or packing dimensions in Euclidean space [34]. For example, their formula in
Theorem 1.12.1 characterizes the Hausdorff dimension of a set in a pointwise manner:
a strange result given that all singleton sets are classically zero-dimensional. But, as
we have discussed, most points are not forthright in revealing their own smallness by
effective means. Essentially, sets of large fractal dimension must contain many sufficiently
random points.

There are still many open questions in regards to the potential applications of
algorithmic information theory to geometric measure theory, as well as to what settings
AIT applies.
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The remainder of this dissertation is organized as follows:

• Chapter 1: We fix some notation and review the basic definitions and results
relevant to our discussion about AIT and GMT. Central to our work are the
outer measures induced by premeasures on a space, various cover and test notions
from algorithmic randomness, and measures of algorithmic information content
such as Kolmogorov complexity and semimeasures. In particular, Theorem 1.8.3
relates three notions from the partial randomness literature: success by a lower-
semicomputable continuous semimeasure, success by a constructive supergale, and
covering by a sequence of strong Solovay tests with rapidly shrinking weights.

• Chapter 2: We establish some basic properties of the lift of Kolmogorov complexity
to Euclidean space. Theorem 2.1.1 shows that the order of optimizers in the defini-
tion of conditional prefix complexity makes no difference up to sub-linear factors.
Theorem 2.1.11 proves a conditional symmetry of information for conditional prefix
complexity. Lemma 2.2.2 confirms a modulus processing inequality for conditional
prefix complexity under computable, uniformly continuous maps, which implies
conditional dimension is invariant under bi-computable, bi-Lipschitz continuous
maps in Theorem 2.2.4.

• Chapter 3: We generalize some results characterizing the distribution of effective
dimension in the Euclidean plane. Our method works for any family of curves
with strong, uniform-continuity properties, which we call a computable absolutely
Lipschitz family (CALF). Theorem 3.3.3 proves a complexity bound that holds
for the dyadic rational reals, leading to an effective dimension result for reals in
Theorem 3.4.2. By viewing the collection of non-vertical, planar lines as given by a
CALF, the lower bound result for points on lines by N. Lutz and D. Stull follows.
In Theorem 3.5.3, we show the Hausdorff dimension spectrum for a CALF satisfies
a straightforward bound. The work in this section arose under the supervision of
Linda Westrick.

• Chapter 4: We generalize AIT to metric spaces admitting collections of subsets
called nets, and effectivize some classical constructions on such spaces. Proposi-
tions 4.3.4 and 4.3.9 prove the existence of optimal lower-semicomputable mesh
semimeasures in both the continuous and discrete cases. Theorem 4.4.16 proves
N. Lutz’s outer measure κ is locally optimal over any layered-disjoint net. Theo-
rem 4.5.16 summarizes the asymptotic coincidences we establish between various
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effective dimension notions over a net space. Theorems 4.6.2, 4.6.7, and 4.6.9,
as well as Corollary 4.6.3, confirm that the point-to-set principles for Hausdorff
dimension and the family of s-dimensional Hausdorff outer measures hold over net
spaces which are rich with net measures. We also construct nets on effective versions
of compact metric spaces (Corollary 4.7.6) and Polish spaces (Proposition 4.7.13).
The work in this section arose under the supervision of Jan Reimann.

• Chapter 5: We use Kolmogorov complexity to prove two geometric measure
theoretic results essential to T. Orponen’s combinatorial proof of the Marstrand-
Mattila Projection Theorem. These are Propositions 5.1.5 and 5.1.6, which arose
from joint work with Ryan Bushling under the supervision of Jan Reimann. Next,
we give a Kolmogorov complexity-based proof for a simple bound about Hausdorff
dimension under locally-Lipschitz transformations: Theorem 5.2.4. This result
applies to various geometries, producing some modest bounds on the Hausdorff
dimension of orthogonal and radial projections in Propositions 5.2.5 and 5.2.6,
respectively. Finally, we show that a new density result: Theorem 5.3.4, holds over
a wide class of net spaces. This implies an analog of Besicovitch’s result on the
existence of compact subsets of non-zero, finite measure to such net spaces. These
last two results arose from joint work with Emma Gruner under the supervision of
Jan Reimann.

• Chapter 6: We offer some concluding remarks and suggest opportunities for
further investigation.

1.2 Notation
Let R denote the set of real numbers, Q the set of rational numbers, and ω the set of
natural numbers (including 0). Let D ⊂ Q denote the set of all dyadic rational numbers
(i.e., numbers of the form k/2l for integers k, l ≥ 0), and Dr the set of all r-dyadic rational
numbers (i.e., all simplified dyadic rationals where the power of 2 in the denominator
is no more than r). Let 2n denote the set of length-n binary strings, 2≤n the set of all
binary strings length no greater than n, 2<ω the set of finite binary strings of any length,
and analogous definitions for each of 2≥n, 2>n, 2ω, and 2≤ω. Similarly, ω<ω will denote
the set of finite sequences of natural numbers, and ωω the set of infinite sequences of
natural numbers. Generally, for any space X, interpret Xm as the set of length-m tuples
over X. In particular, elements of (2≤n)m are m-tuples of binary strings of a common
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length less than or equal to n.
If δ > 0 and A is a subset of a metric space (Ω, d), then let us define the δ-neighborhood

of A to be Bδ(A) := {x ∈ Ω : d(x,A) < δ}. Then for any x ∈ Ω, the set Bδ(x) := Bδ({x})
is the open ball of radius δ about x.

The cardinality of a set A is denoted by |A|. We also use |·| for the absolute value on
R. Use λ to denote the Lebesgue measure on both 2ω and R. For any p ∈ [0,∞], ||·||p
denotes the Lp-norm on Euclidean space, and we may simply write ||·|| for the standard
L2-norm unless specified otherwise. While logb will denote the base-b logarithm for any
0 < b ̸= 1, we will always take log to mean the base-2 logarithm. Also let Qm be the
collection of all the m-dimensional dyadic cubes in Rm, consisting of the sets Q(z, a, r)
of the form:

[z0 + a0 · 2−r, z0 + (a0 + 1) · 2−r) × · · · × [zm−1 + am−1 · 2−r, zm−1 + (am−1 + 1) · 2−r),

where z ∈ Zm, a ∈ ωm, and r ∈ ω. Collect into Qm
r all the m-dimensional dyadic cubes

Q(z, a, r) with side-length 2−r.
It will often happen that certain equalities hold only up to an additive or multiplicative

constant. For this reason we use the following notation: a statement of the form
f(x) ≤+ g(x) for all x ∈ X means that there exists a constant c ∈ R such that
f(x) ≤ g(x) + c for all x ∈ X. Similarly f(x) =+ g(x) for all x ∈ X means that
f(x) ≤+ g(x) ≤+ f(x) for all x ∈ X. Similarly, f(x) ≤∗ g(x) for all x ∈ X will mean
there exists a constant c ∈ R such that f(x) ≤ c · g(x) for all x ∈ X, and similar
for f(x) =∗ g(x). Similarly, the notation f = Ov(g) is to be interpreted as f ≤∗ g

everywhere, where the implicit multiplicative constant may depend on the components in
v. And the notation o(r) is used to represent a sub-linear term, or a term which satisfies
limr→∞

o(r)
r

= 0.
The length of a string σ ∈ 2≤ω may be denoted by len(σ) (infinite whenever σ ∈ 2ω).

A string τ ∈ 2≤ω extends another string σ ∈ 2≤ω if τ(n) = σ(n) for all n < len(σ),
and this is denoted by σ ⪯ τ . Moreover, τ is a proper extension of σ if σ ⪯ τ yet
σ ̸= τ . Two strings σ and τ are comparable (denoted σ || τ) if either σ ⪯ τ or τ ⪯ σ.
String concatenation is denoted by σ⌢τ (or sometimes στ , omitting the concatenation
symbol) for any strings σ ∈ 2<ω and τ ∈ 2≤ω. Formally, this is defined as the unique
string of length len(σ) + len(τ) such that σ ⪯ σ⌢τ and (σ⌢τ)(len(σ) + n) = τ(n) for all
0 ≤ n < len(τ).

A collection of finite binary strings S ⊆ 2<ω is called prefix-free if no two elements of
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S are comparable, i.e., (∀σ, τ ∈ S)[¬(σ || τ)]. Then for any S ⊆ 2<ω, denote by Ŝ the
collection of all minimal elements of S with respect to the prefix partial relation, i.e.,

Ŝ := {σ ∈ S : ¬(∃τ ⪯ σ)[τ ∈ S]} .

Notice that Ŝ will always be a prefix-free subset of S.
For any finite binary string σ ∈ 2<ω, denote by [σ] the cylinder set above σ comprising

all infinite extensions of σ. Collect into B all of the cylinder sets above the finite strings
from 2<ω. Then B serves as a clopen basis for the product topology on 2ω, in which every
open set is of the form [S] := ⋃

σ∈S[σ], where S ⊆ 2<ω. Also, let JσK := {τ ∈ 2<ω : σ ⪯ τ}
denote the collection of finite binary strings extending σ. The truncation of a binary string
σ ∈ 2≤ω up to the first r ≥ 0 places is denoted by σ ↾ r = (σ(i) : i < min {r, len(σ)}).

The length of a string tuple σ = (σ1, σ2, ..., σm) is defined as

len(σ) := min {len(σ1), len(σ2), ..., len(σm)} ,

or infinite when all components are of infinite length. We may extend the prefix relation
to string tuples σ, τ ∈ (2≤ω)m component-wise,

σ ⪯ τ : ⇐⇒ (σ1 ⪯ τ1) ∧ (σ2 ⪯ τ2) ∧ · · · ∧ (σm ⪯ τm).

The truncation of a real number x ∈ R up to precision-level r ∈ ω may be defined as
x ↾ r := 2−r · ⌊x · 2r⌋. Under the standard association between real numbers and their
infinite binary expansions (under the convention of only permitting infinite tails of zeros),
these two notions of truncation agree in the following sense. Without loss of generality,
consider x ∈ [0, 1) and let x have the infinite binary expansion 0.x(0)x(1)x(2) · · · . Then,
for any r ∈ ω, it holds that its length-r truncation as a string (followed by an infinite tail
of zeros) 0.x(0)x(1) · · ·x(r − 1)⌢0ω is the infinite binary expansion of the real number
x ↾ r.

Truncation for a real tuple x = (x1, x2, ..., xm) ∈ Rm is taken component-wise:

x ↾ r := (x1 ↾ r, x2 ↾ r, ..., xm ↾ r) ∈ B2−r
√

m(x) ∩ Dm
r .

Consider the collections of natural numbers: ω, finite binary strings: 2<ω, or dyadic
rationals: D. For the purposes of computability theory, we assume that between each pair
of these sets there exists a computable bijection. Other collections can be added to this
list, including the cylinder sets: B, all the finite subsets of ω, the integers: Z, the rationals:
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Q, the collection of finite sequences of natural numbers: ω<ω, and finite-products of such
sets. We say that each such collection is composed of finitary objects, also known as
hereditarily finite objects. Whenever a definition is appropriate for any finitary object,
we will state the definition using the symbol N as a placeholder for any one of these
collections.

For instance, given a standard collection of finitary objects N as described above
and an element n ∈ N , one might evaluate len(·), truncation, or the prefix relation on
the finite binary string to which n is associated under a canonical, computable bijection
between N and 2<ω.

Finitary objects often give rise to infinitary objects via some limiting process and
thus admit a notion of extension. For instance, any infinite binary string x ∈ 2ω is the
limiting sequence of its prefixes x ↾ r ∈ 2<ω for r ∈ ω. Any real x ∈ R is definable by
Dedekind cuts over the rationals Q. Any infinite subset of ω is the countable union of
finite, nested subsets of ω. Mappings between spaces of infinitary objects depend on
the context, and each space of infinitary objects can take on extra metric or topological
structure, so we will treat these spaces individually. Other examples include the set of
countably-infinite sequences of natural numbers: ωω, and the set of infinite subsets of ω
and their characteristic functions.

1.3 Measures and Hausdorff Dimension

1.3.1 Measures

We begin by reviewing premeasures and their associated outer measures. For more details,
refer to [53] and [55].

Definition 1.3.1. Let C be a collection of subsets of a set Ω containing ∅. Then a
premeasure on C is a function ρ : C → [0,+∞] and satisfies ρ(∅) = 0.

In the setting of Cantor space, it is customary to consider a premeasure on 2ω to be
any non-negative mapping defined on the cylinder sets ρ : B → [0,+∞]. Of course, such
maps are in one-to-one correspondence with maps defined on the finite binary strings
ρ : 2<ω → [0,+∞]. We may freely interchange between these two types by identifying
any σ ∈ 2<ω with its cylinder set [σ] ∈ B.

In metric spaces, there is a standard, general method (introduced as “Method II”
in [55]) to induce an outer measure from a given premeasure.
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Theorem 1.3.2 (Theorem 15 of [55]). Let ρ be a premeasure on a collection C of subsets
of a metric space (Ω, d). Define for each X ⊆ Ω and δ > 0:

Hρ
δ(X) := inf

(Ci)i∈ω⊆C

{∑
i

ρ(Ci) : diamd(Ci) ≤ δ,
⋃
i

Ci ⊇ X

}
, and Hρ(X) := sup

δ>0
Hρ

δ(X).

Then, Hρ is an outer measure on Ω.

We call Hρ the Method II outer measure associated to the premeasure ρ. And for each
δ > 0, we also call Hρ

δ the ρ-dimensional δ-content measure.
In [55], C. Rogers also defines an alternative “Method I” which differs from Method

II in that it does not enforce any upper bound on the diameter of the cover elements
used in the infimum:

Hρ
I (X) := inf

(Ci)i∈ω⊆C

{∑
i

ρ(Ci) :
⋃
i

Ci ⊇ X

}
.

This outer measure is also sometimes denoted Hρ
∞. While this method also produces an

outer measure from a premeasure ρ which agrees on null sets with Hρ, Rogers points out
that only the results of Method II can be guaranteed to be additive on sets which are
separated by positive distance [55]. We proceed with Method II as our preferred way to
produce outer measures from premeasures.

Cantor space: 2ω, is a metric space when imbued with the standard metric,

d(x, y) :=

2−N if x ̸= y and N = min {n ∈ ω : x(n) ̸= y(n)},

0 if x = y.

Note that this metric is compatible with the product topology generated by the cylinder
sets in B.

1.3.2 Hausdorff Measures

An important class of outer measures on any metric space (Ω, d) are the Hausdorff outer
measures, which are those Method II outer measures induced from premeasures whose
values depend only on the diameter of the set. First, declare a dimension function to
be any non-negative, non-decreasing, continuous-on-the-right function h defined on all
non-negative real numbers and satisfying h(t) = 0 ⇐⇒ t = 0. One may associate to

9



any dimension function h its Hausdorff premeasure defined on all X ⊆ Ω as follows:

ρh(X) := (h ◦ diamd)(X).

In Cantor space, ρh(σ) = h
(
2− len(σ)

)
for any σ ∈ 2<ω. So, any Hausdorff premeasure

on 2ω is length-invariant, in that ρh(σ) only depends on the length of σ. Later, we will
briefly focus on convex Hausdorff premeasures ρ over Cantor space, which satisfy:

ρ(σ) ≤ ρ(σ⌢0) + ρ(σ⌢1),

for all σ ∈ 2<ω. It is easy to see that all length-invariant, convex Hausdorff premeasures
over 2ω are also strongly convex, meaning for all σ ∈ 2<ω and i ∈ {0, 1},

ρ(σ⌢i) ≥ ρ(σ)
2 .

Essential to fractal geometry is the family of s-dimensional Hausdorff premeasures
ρs := ρhs , where hs : t 7→ ts is the dimension function associated to s ≥ 0. If δ > 0,
let Hs

δ := Hρs

δ denote the s-dimensional Hausdorff δ-content, and Hs := Hρs the s-
dimensional Hausdorff outer measure.

For any outer measure µ on a metric space (Ω, d), we say a set X ⊆ Ω is µ-null if
µ(X) = 0. Any Hs-null X is also called s-null.

Suppose Hs(X) < ∞ for some s ≥ 0. This implies that X is s+-null for any s+ > s

too. Alternatively, if Hs(X) > 0 for some s ≥ 0, then it must be that Hs−(X) = ∞ for
all 0 ≤ s− < s. So, the shape of the function s 7→ Hs(X) is either constant with value
0 or ∞, or a step from ∞ to 0 (where, at the critical value of s where the step occurs,
Hs(X) could take on any value in [0,∞]). This motivates the following definition for the
Hausdorff dimension of a set X [12, 16]:

dimH(X) := inf {s ≥ 0 : X is s-null} , (1.1)

or +∞ if the infimum is taken over the empty set.
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1.4 Computability Theory

1.4.1 Computability by Machines

We briefly review the necessary components of computability theory for discussing
algorithmic randomness. In this dissertation, we accept Turing’s model of computation
as the “right” way to characterize algorithmic or effective procedures. According to
the Church-Turing thesis, the subsets of the natural numbers or functions from natural
numbers to natural numbers which are “intuitively algorithmic” are exactly those which
may be computed by Turing machines. See [11] for more on the formalism of Turing
machines.

To begin, we will consider partial functions of the form Φ :⊆ ω → ω. If dom(Φ) = ω,
call Φ total. Each Turing machine M computes a partial function ΦM :⊆ ω → ω satisfying
n ∈ dom(ΦM) ⇐⇒ M(n) ↓, and n ∈ dom(ΦM) implies M(n) ↓= ΦM(n). All such ΦM

are called partial computable (p.c.) functions. Moreover, whenever A = dom ΦM is the
domain of a Turing machine M , then M is said to computably enumerate A, making A
computably enumerable (c.e.). If both A and its complement ω \ A are c.e., then A is
called computable.

Proposition 2.2.2 of [11] helps to motivate the name “computably enumerable.” It
states that A is c.e. if and only if either A is empty or there is a total computable function
Φ from ω onto A. That is, the non-empty c.e. sets are exactly those enumerated in some
order by a Turing machine.

By the Enumeration Theorem (see Theorem 2.1.2 of [11]), there exists a single
algorithm to enumerate all partial computable functions (Φe)e∈ω. Thus, there exists a
universal partial computable function f of two variables such that f(e, n) = Φe(n) for all
e, n ∈ ω (note that they could both diverge). Let U be a Turing machine computing f ,
which is called a universal Turing machine.

A similar result holds for oracle machines or Turing functionals (see [54] and [11] for
more details). Intuitively, oracle machines are Turing machines which receive and may
make use of the extra information encoded in some oracle. An oracle machine M given
oracle B ∈ 2≤ω is said to compute a B-partial computable function ΦB

M :⊆ ω → ω as
before. Similarly, there is a single oracle machine (also called U) which, given an oracle
B ∈ 2≤ω, will enumerate all B-partial computable functions (ΦB

e )e∈ω.
If there is an oracle machine M that computes the set A ⊆ ω given an oracle B, then

A is said to be Turing reducible to B, or B-computable. This is denoted by A ≤T B.
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Similarly, a set A is computably enumerable in B (or, B-c.e.) whenever A = dom Φ
for some B-partial computable function Φ. Relativization is the process of generalizing
notions or results from Turing machines to oracle machines given arbitrary oracle-power.
Most results we cite from computability theory may be relativized appropriately.

In later sections, we will also make use of lower- or upper-semicomputability. A
real number x ∈ R is lower-semicomputable (or left-c.e.) if its Dedekind left cut
{q ∈ Q : q < x} is c.e. Similarly, a real-valued map f : ω → R is lower-semicomputable if
its lower graph {(n, q) ∈ ω × Q : q < f(n)} is c.e. If f : ω → [a,∞) has a known, com-
putable codomain which is bounded from below, we may equivalently characterize lower-
semicomputability by the ability to be approximated from below by some computable
left-approximator. That is, suppose there exists a computable map f̂ : ω × ω → [a, b]
satisfying:

f̂(i, r) ≤ f̂(i, r + 1) ≤ f(i), and lim
r→∞

f̂(i, r) = f(i),

for all i, r ∈ ω. Then, it is straightforward to argue that the lower graph of f is
computably enumerable. Conversely, from an enumeration of the lower graph of f , one
may define such a left-approximator f̂ to f : for a given i ∈ ω, one may approximate f(i)
as the largest rational q such that (i, q) has been enumerated into the lower graph of
f . If no such rational has yet been approximated, we may take f̂(i, r) = a. Analogous
definitions work for upper-semicomputability.

The definitions above are given for either subsets of the natural numbers or functions
on the natural numbers, but they may be extended to the other standard collections of
finitary objects discussed in Section 1.2 via a computable bijection.

1.4.2 Computable Analysis

Now, let us import some notions from computable analysis as presented in [24]. For the
rest of this section, fix the ambient dimensions m,n ∈ ω and an oracle machine M .

Fix a map ϕ : ω → Dm from the natural numbers to dyadic rationals in Rm satisfying
ϕ(r) ∈ Dm

r for all r ∈ ω. Then, ϕ is said to be a Cauchy representation of x ∈ Rm if
|ϕ(r) − x| ≤ 2−r for all r ∈ ω. If ϕ is a Cauchy representation of x further satisfying
ϕ(r) ≤ x < ϕ(r)+2−r for all r ∈ ω, then ϕ is said to be a standard Cauchy representation
for x. Such a ϕ can compute the binary expansion of x having no infinite tail of ones.
For any ϕ : ω → Dm, we will denote by Mϕ the partial map computed by M given ϕ

encoded as an infinite binary string for its oracle. And Mx will denote the partial map
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computed by Mϕ, where ϕ is some standard Cauchy representation of x.
M is said to compute a real function f : Rm → Rn if ϕ being a Cauchy representation

for some x ∈ dom(f) implies Mϕ is a Cauchy representation of f(x).
Now, fix a metric space (Ω, d). Two subsets X and Y of Ω are said to be ε-close for

ε > 0 if for each x ∈ X, there exists y ∈ Y such that d(x, y) < ε, and vice versa. The
Hausdorff distance between X and Y is then defined:

dH(X, Y ) = inf {ε > 0 : X is ε-close to Y } .

We may now recall the effective versions of certain metric spaces as presented in [19].
The triple Ω = (Ω, d, α) is a computable metric space if α = (αi)i∈ω is a dense sequence

in (Ω, d) for which the function mapping (i, j) 7→ d(αi, αj) is computable.
Take Ω = (Ω, d, α) to be a computable metric space. If d happens to be a complete

metric, call Ω a computable Polish space. Any subset X ⊆ Ω of a computable metric
space is called computably compact if either X = ∅ or there exists a computable map
f : ω → ω such that for each k ∈ ω,

dH(X,Λf(k)) < 2−k,

where Λe is the e-th collection enumerated in a standard, computable enumeration of
all finite sub-collections of α. Then, the computable metric space Ω is called effectively
compact if Ω is computably compact in Ω.

1.4.3 Lightface Hierarchies

Kleene’s arithmetic hierarchy assigns definability-complexity levels to subsets of the
natural numbers. Any set A ⊆ ω is a Σ0

n-set if there is a computable relation R on n+ 1
arguments such that

a ∈ A ⇐⇒ ∃x1∀x2 · · ·QxnR(x1, ..., xn, a),

where the quantifiers alternate and end with Q being ∃ whenever n is odd, and ∀ when
n is even. A Π0

n-set is the complement of a Σ0
n set. And a set which is both Σ0

n and Π0
n

is called ∆0
n. For convenience, each of ∆0

0, Σ0
0, and Π0

0 are defined as containing exactly
the computable sets. Moreover, a set is computably enumerable if and only if it is Σ0

1,
and computable if and only if it is ∆0

1. This hierarchy may be relativized to any oracle
by permitting the relation be Turing-reducible to it.
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Suppose S ⊆ 2<ω is a c.e. set of finite binary strings. Then [S] := ⋃
σ∈S[σ] is called a

Σ0
1-class, or an effectively open subset of Cantor space. The complement of a Σ0

1-class
is called a Π0

1-class, or an effectively closed subset. Starting from these base classes, an
analogous hierarchy to Kleene’s arithmetic hierarchy forms for subsets of Cantor space.
There are two ways to build higher levels of this lightface hierarchy. The first is by
computable relations: a subset U ⊆ 2ω is a Σ0

n-class for n ∈ ω if there is a computable
relation R on n arguments such that

α ∈ U ⇐⇒ ∃x1∀x2 · · ·Qxn R(x1, x2, ..., α ↾ xn),

again by alternating quantifiers with an appropriate choice for the innermost one Q.
The complement of a Σ0

n-class is a Π0
n-class. But we may equivalently conceive of the

Σ0
n+1-classes as uniformly-computable unions of Π0

n-classes. This may be formalized using
effective Borel codes. And a set which is both a Σ0

n-class and a Π0
n-class is also called

a ∆0
n-class. These notions may be relativized to any oracle B ∈ 2≤ω, notated with B

in the superscript: Σ0,B
n , etc. The Fundamental Theorem of effective descriptive set

theory states that for any n ∈ ω, it holds that Σ0
n = ⋃

B∈2≤ω Σ0,B
n , where Σ0

n denotes
the corresponding level of the (boldface) Borel hierarchy from classical descriptive set
theory. This motivates naming the hierarchy of Σ0

n and Π0
n-classes as the lightface Borel

hierarchy.

1.5 Algorithmic Randomness
We review the tests-based approach to algorithmic randomness, all with respect to a
given premeasure.

1.5.1 Weights

Definition 1.5.1. Let V ⊆ 2<ω be a collection of finite binary strings and ρ be a
premeasure on 2ω. Define for V its:

• Direct ρ-weight: DWρ(V) := ∑
σ∈V ρ([σ]),

• Prefix ρ-weight: PWρ(V) := sup {DWρ(P) : P ⊆ V is prefix-free},

• Vehement ρ-weight: VWρ(V) := inf {DWρ(W) : W ⊆ 2<ω and [V ] ⊆ [W ]}.
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When working with the s-dimensional Hausdorff premeasure ρs for some s ≥ 0, we
might simply write DWs(V) for the direct s-weight of V , and similar for the other weight
notions.

For any V ⊆ 2<ω, we defined V̂ in Section 1.2 to include only those strings in V
which are minimal with respect to the prefix relation. Then V̂ is prefix-free and satisfies
[V̂] = [V]. Using this fact, it is straightforward to verify that the above weight notions
are ordered as follows:

VWρ(V) ≤ PWρ(V) ≤ DWρ(V).

These covering weights also relate to the s-dimensional Hausdorff outer measures. In
particular, if Hs(X) < c for some dimension parameter s ≥ 0, constant c > 0, and subset
X ⊆ 2ω, then it follows that for every r ∈ ω, there exists a collection of finite binary
strings S ⊆ 2≥r such that X ⊆ [S] and DWs(S) < c.

1.5.2 Tests

We introduce some test notions, or effective schemes for identifying null-sets with respect to
some premeasure. For the rest of the section, we will only consider upper-semicomputable
premeasures on 2ω. This restriction is made to ensure the collection of all tests of some
type is uniformly-c.e. By relativizing these tests to some oracle, one could expand the
class of premeasures considered to those which are upper-semicomputable in B.

Definition 1.5.2. Let ρ be an upper-semicomputable premeasure on 2ω. Suppose
U = (Un)n∈ω is a uniformly-c.e. sequence of collections Un ⊆ 2<ω of finite binary strings.
Then define U to be:

• a Martin-Löf-ρ-test if DWρ(Un) ≤ 2−n for all n ∈ ω,

• a strong Martin-Löf-ρ-test if PWρ(Un) ≤ 2−n for all n ∈ ω, and

• a vehement Martin-Löf-ρ-test if VWρ(Un) ≤ 2−n for all n ∈ ω.

And if V ⊆ 2<ω is a c.e. collection of finite binary strings, define V to be:

• a Solovay-ρ-test if DWρ(V) < +∞, and

• a strong Solovay-ρ-test if PWρ(V) < +∞.
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We use T as a placeholder for any one of the above test notions. Once again,
for any Hausdorff premeasure ρs with s > 0 being left-c.e., we simplify each of the
above terms as T -s-tests. And when s = 1, we might simply refer to them as T -tests.
Furthermore, any one of these test notions may be relativized to an oracle B ∈ 2≤ω,
regarding computable-enumerability as in B. We may refer to such tests as T -B-ρ-tests.

A Martin-Löf-ρ-test (or ML-ρ-test) is the strictest notion of test we have defined,
meaning from any Martin-Löf-ρ-test U , one may produce a T -ρ-test for any of the other
test notions T . In fact, such a U is already both a strong and vehement ML-ρ-test, and
generates the collection V := ⋃

n Un which is a (strong) Solovay-ρ-test. Of course, any
strong ML-ρ-test is also a vehement ML-ρ-test, and any Solovay-ρ-test is already a strong
Solovay-ρ-test.

1.5.3 Covers

Tests act as effective covers of subsets of Cantor space.

Definition 1.5.3. Let ρ be an upper-semicomputable premeasure on 2ω and X ⊆ 2ω be
a subset.

• Let U = (Un)n∈ω be a (possibly strong or vehement) Martin-Löf-ρ-test. Then U is
said to cover X whenever X ⊆ ⋂

n Un. Otherwise, X is said to have passed U .

• Alternatively, let V be a (possibly strong) Solovay-ρ-test. Then V is said to cover
X whenever, for each x ∈ X, there are infinitely many r ∈ ω for which x ↾ r ∈ V.
Otherwise, X is said to have passed V .

For a fixed test notion T (e.g., Martin-Löf) and upper-semicomputable premeasure ρ
on 2ω, an infinite binary string x ∈ 2ω is said to be T -ρ-random if {x} passes all T -ρ-tests.
Otherwise, {x} is covered by some such test, exhibiting itself to be (effectively) T -ρ-null.

Note that if ρ is an upper-semicomputable, Hausdorff premeasure (i.e., the premeasure
associated to an upper-semicomputable dimension function h as described in Section 1.3),
being T -ρ-null for any of the test notions T defined here implies being Hρ-null. Suppose,
for instance, that U were a vehement ML-ρ-test and δ > 0. Then, it is possible to show
that there exists a sequence (Wn)n∈ω where each Wn ⊆ 2<ω consists of strings of diameter
no greater than δ and is such that [Un] ⊆ [Wn] and DWρ(Wn) ≤ 2 · 2−n. If V = ⋃

n Wn,
then

∑
σ∈V

Hρ
δ([σ]) =

∑
n

∑
σ∈Wn

DWρ([σ]) =
∑

n

DWρ(Wn) ≤
∑

n

2 · 2−n < ∞.
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Since δ > 0 was arbitrary, Hρ is an outer measure, and X ⊆ lim supσ∈V [σ], the (first)
Borel-Cantelli lemma implies Hρ(X) = 0. Additionally, supposing V were a strong
Solovay-ρ-test covering X and δ > 0, then we could restrict V to only those strings of
diameter no more than δ while maintaining V being a strong Solovay-ρ-test covering X.
Then, for each ε > 0, it is possible to show that there exists a prefix-free subset P ⊆ V
such that [V] ⊆ [P] and DWρ(P) < ε. Then, by monotonicity, Hρ

δ(X) ≤ DWρ(P) < ε.
And since both δ, ε > 0 were arbitrary, we conclude X is Hρ-null.

For any upper-semicomputable premeasure ρ on 2ω and any of the above test notions T ,
it follows from the property that Hρ is an outer measure that the set of non-T -ρ-randoms
is Hρ-null.

Weaker randomness notions come from stricter test notions. So, the class of Martin-
Löf-ρ-randoms contains all the other classes of T -ρ-randoms discussed here.

1.5.4 More Covering Notions

Let us start by reviewing some definitions originally appearing in [21] (and re-appearing
slightly differently in [51]).

Definition 1.5.4. A countable collection (Xi)i∈ω of sets strongly covers another set X if
each element of X is also an element of infinitely many Xi.

Note that in Definition 1.5.3, we consider X to be covered by a Solovay-type test if
that test strongly covers X in the sense of Definition 1.5.4.

Definition 1.5.5. For any (bounded) set X ⊆ Rm and δ > 0, define,

N(X, δ) := min {|Y | : Y is a set of δ-balls covering X} .

The quantity N(X, δ) is exactly what appears in the definitions of the box-counting
dimensions, as it captures the least number of δ-balls required to cover X (see [12]). This
fractal dimension always bounds the Hausdorff dimension from above.

Definition 1.5.6. Fix m ∈ ω, and let s, δ > 0 and C ≥ 1. A finite set P ⊆ Rm is called
a (C, δ, s)-set if for any x ∈ Rm and δ ≤ ε ≤ 1,

|P ∩Bε(x)| ≤ C ·
(
ε

δ

)s

.

Suppose that X ⊆ Rm has dimH X = s. Then any (C, δ, s)-set will have no more
points in X than a constant times what any δ-net on X would. That is, (C, δ, s)-sets

17



are spread out such that they never dedicate many points to sets of small Hausdorff
dimension.

Note that it is not vital that we use r-balls in these definitions for N(X, δ) or (C, δ, s)-
sets. For instance, replacing these with dyadic cubes of comparable side-lengths would
produce roughly equivalent notions.

Over Euclidean space, there is a relationship between Hausdorff dimension and
(C, δ, s)-sets. For instance, a set of Hausdorff dimension less than s will have a (C, δ, s)-
set whose δ-neighborhood strongly covers the set. The precise result originally appeared
in [21] by N. Katz and T. Tao, but was simplified and slightly generalized by T. Orponen
in [51].

Lemma 1.5.7 (Lemma 7.5 of [21]; Lemma 2.1 of [51]). Let 0 < s ≤ m and let X ⊆ Rm

be a subset with dimH X < s. Then, there exists a constant C ≥ 1 depending only on m,
s, and dimH X such that: for every k ∈ ω, there exists a (Ck2, 2−k, s)-set Pk such that
the sequence (BCm·2−k(Pk))k∈ω strongly covers X, where Cm ≥ 1 only depends on m.

The above lemma was leveraged by Orponen to generalize a weak form of the
Marstrand-Mattila Projection Theorem for arbitrary subsets of Euclidean space [51]
(see Theorem 5.1.2). We will present an effective proof of the Katz-Tao lemma later in
Section 5.1.

Also recall the related notion of an optimal cover originally by J. Miller [47].

Definition 1.5.8. Let ρ be a premeasure on 2ω and S ⊆ 2<ω. Then a ρ-optimal cover
of S is a set S∗ ⊆ 2<ω satisfying [S] ⊆ [S∗] and DWρ(S∗) = VWρ(S).

Optimal covers witness the vehement ρ-weight of a set. In general, it is unclear
whether optimal covers exist. However, a result by P. Hudelson proves a necessary
condition for the existence of optimal covers.

Lemma 1.5.9 (Theorem 3.4.22 of [18]). Let ρ be a convex Hausdorff premeasure on 2ω.
Then, for all S ⊆ 2<ω, there exists a ρ-optimal cover of S.

In particular, if ρ is also computable and S is c.e., then one may find another c.e. set
A (uniformly in ρ and S) such that Â is a ρ-optimal cover of S.

Essential to the proof of Lemma 1.5.9 is the fact that whenever ρ is convex and
σ ∈ 2<ω, then {σ} is the DWρ-minimal cover of [σ] among all other collections S ⊆ JσK
covering [σ].

Observe that an optimal cover will necessarily be prefix-free by minimality. When
ρ = ρs, simplify the term to an s-optimal cover. Optimal covers were originally employed
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by Miller to construct a ∆0
2-definable real with effective dimension equal to 1/2 yet unable

to compute any real of greater effective dimension [47]. We will make use of optimal
covers for effectivizing Lemma 1.5.7 in Section 5.1.

1.6 Prefix Complexity

1.6.1 Incompressibility

Recall the universal oracle machine U from Section 1.4. The universality of U implies
some invariance and minimality properties in the following senses. Let σ and τ be
finite binary strings and M to be an oracle Turing machine on finite binary strings. By
universality, it holds that there exists a string νM which may be prepended to the input
σ to allow U to simulate M on σ given any oracle B, i.e., UB(νM

⌢σ) = MB(σ). Define
the conditional plain Kolmogorov complexity of σ given τ in M to be

CM(σ | τ) = min
{
len(π) : M τ (π) ↓= σ

}
,

or +∞ when minimizing over an empty set; where we map the condition τ into a
prefix-free set of strings via τ = τ0τ0τ1τ1 · · · τlen(τ)−1τlen(τ)−101 (on account of the fact
that the set of oracles on which a machine M may converge on a fixed input σ must be
prefix-free; see [11] for more details). Then, call C(σ | τ) := CU(σ | τ) the conditional
plain Kolmogorov complexity of σ given τ . Under any other choice of universal machine U,
this quantity is invariant up to an additive constant independent of σ and τ . Conditional
plain complexity also satisfies minimality, in that for any M :

C(σ | τ) ≤ CM(σ | τ) +OM(1).

for some constant term depending on M . The plain Kolmogorov complexity of a string
σ is simply C(σ) = C(σ | ⟨⟩). We call any finitary object π satisfying M τ (π) ↓= σ an
M -description for “σ | τ”. Any M -description π of σ | τ for which len(π) = CM (σ | τ) is
also called minimal.

A prefix-free (PF) oracle machine is an oracle machine on finite binary strings with
prefix-free domain for any oracle. Any PF oracle machine M computes a prefix-free
partial function ΨM :⊆ 2<ω → 2<ω as before. Again, by the Enumeration Theorem, there
exists a universal PF oracle machine UPF. That is, for each PF oracle machine M , there
exists a coding string νM ∈ 2<ω such that given any oracle B and input σ ∈ 2<ω, we have
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UB
PF(νM

⌢σ) = MB(σ). Once again, UPF admits an invariant and minimal complexity
notion in the sense that for any other PF oracle machine M , there exists an additive
constant term OM(1) such that for any σ, τ ∈ 2<ω,

CUPF(σ | τ) ≤ CM(σ | τ) +OM(1).

We let K(σ | τ) = CUPF(σ | τ) denote the conditional prefix Kolmogorov complexity of σ
given τ . Both plain and prefix complexities may be relativized to any oracle by pairing the
oracle and the condition string (see [11] for more details). Then KB(σ | τ) := CB

UPF
(σ | τ)

denotes the conditional prefix Kolmogorov complexity of σ given τ relative to B.
These complexity notions may also be extended to any other standard collection of

finitary objects N with a constant amount of overhead, meaning we would only need to
sacrifice at most a constant number of bits to describe the computable bijection between
2<ω and N .

1.6.2 Results on Prefix Complexity

We review some standard results on prefix complexity.
First, one might refer to the following result as either the symmetry of information

or the chain rule for conditional prefix Kolmogorov complexity. It was first shown by
P. Gács [14]. The first equation is the strong form and is a property specific to prefix
complexity; whereas the second equation is a weak form (where equality holds up to
logarithmic terms in the string lengths) shared by many Kolmogorov complexity notions.

Theorem 1.6.1 (Chain Rule for Conditional Prefix Kolmogorov Complexity; Theorem 1
of [14]). There exists a constant c ∈ ω such that for any σ, τ, ζ ∈ 2<ω,

K (σ, τ | ζ) = K (σ | ζ) +K (τ | σ,K (σ) , ζ) ± c

= K (σ | ζ) +K (τ | σ, ζ) ± [O(log len(σ)) + c].

An easy consequence of the chain rule is the subadditivity of K: i.e., for any σ, τ ∈ 2<ω,

K(σ⌢τ) ≤ K(σ, τ) ≤ K(σ) +K(τ) +O(1).

We may also say something about the growth-rate of K as an integer function. Write
len(n) + len(len(n)) + · · · for the sum of nested applications of len, including only those
terms which are positive. Let log∗(n) denote the number of such terms in that sum.
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Thenm, for any natural number n ∈ ω, the optimized prefix-codes in equation (3.2)
of [29] demonstrate

K (n) ≤ log∗ n+ len(n) + len(n)) + len(len(len(n))) + · · · +O(1) (1.2)

≤ log(1 + n) + 2 log log(2 + n) +O(1)

= O(log n) +O(1).

Intuitively, we consider n to be a finite binary string of length len(n). One description of
n involves storing an index (of length no more than len(n)) of where n appears among all
other strings of length len(n) when ordered lexicographically. This algorithm requires a
description for len(n) to work, so we might iterate the argument on len(n) as appearing
somewhere in the list of all strings of length len(len(n)), and so on. The log∗ n term is
necessary because our machine must be prefix-free.

Together, the chain rule 1.6.1 and the inequality in (1.2) imply the results of Example
3.1.6 of [29]. Namely, that for any finitary n ∈ ω,

K (n) ≤ K (n | len(n)) +K (len(n)) +O(1)

≤ K (n | len(n)) + log∗ len(n) + len(len(n)) + · · · +O(1) (1.3)

≤ K (n | len(n)) + log (1 + len(n)) + 2 log log(2 + len(n)) +O(1)

= K (n | len(n)) +O(log len(n)) +O(1).

This fact extends to a complexity bound for any integer tuple based on its Euclidean
length (see Observation A.3 of [34]): for any tuple-length m ∈ ω and integer tuple
z ∈ Zm,

K(z) ≤ m · log (1 + ||z||) + 2 · log log (2 + ||z||) +Om(1). (1.4)

The form of this inequality extends to any r-dyadic rational tuple q ∈ Dm
r , where the

constant term may depend on both m and r.
We include here the conditional version of another standard observation for Kol-

mogorov complexity: that the complexity of the output of an algorithm is bounded from
above by the the complexity of the input plus some overhead to describe the algorithm.
This follows from the universality of UPF.

Theorem 1.6.2 (Conditional version of Proposition 3.5.4 of [11]). Let Φ :⊆ 2<ω → 2<ω

be partial computable. Then, there exists a constant c ∈ ω such that for any σ ∈ dom(Φ)
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and τ ∈ 2<ω,

K(Φ(σ) | τ) ≤ K(σ | τ) + c.

As a consequence, as noted on page 218 of [29], one may conclude that K is continuous
as an integer function. That is, for any natural numbers n,∆n ∈ ω,

|K (n+ ∆n) −K (n)| ≤ K (∆n) +O(1).

We might extend this and Theorem 1.6.2 as follows. Define Φ :⊆ 2<ω → 2<ω to
be partial co-computable (p.c.c.) if Φ is injective and has a partial computable inverse
defined on the range of Φ. And Φ is called partial bi-computable (p.b.c.) if Φ is both
partial computable and partial co-computable.

Proposition 1.6.3. Let Φ :⊆ 2<ω → 2<ω. Then there exists a constant c ∈ ω such that
for any σ ∈ dom(Φ) and τ ∈ 2<ω,

Φ is p.c. =⇒ K(Φ(σ) | τ) ≤ K(σ | τ) + c and K(τ | σ) ≤ K(τ | Φ(σ)) + c,

Φ is p.c.c. =⇒ K(σ | τ) ≤ K(Φ(σ) | τ) + c and K(τ | Φ(σ)) ≤ K(τ | σ) + c,

Φ is p.b.c. =⇒ K(Φ(σ) | τ) = K(σ | τ) ± c and K(τ | Φ(σ)) = K(τ | σ) ± c.

Let us describe a general scheme for proving bounds for prefix complexity. Suppose
we would like to prove a bound of the form:

K(a | b) ≤ K(a1 | b1) + · · · +K(ak | bk) +O(1),

where a, b and a1, b1, ..., ak, bk are some finitary arguments and O(1) may depend on k.
In plainer language, this would read as “one may produce a description for a given b and
given descriptions for each ai given bi.”

Formally, to prove a bound of this form, one should construct an appropriate PF
oracle machine exhibiting it. The machine M should interpret its input as a tuple of
k strings: ⟨π

â1 |̂b1
, ..., π

âk |̂bk
⟩, and read a string b̂ from its oracle tape. The machine may

use b̂ and any other results stored along the course of the computation to produce some
strings called b̂i for any of the 1 ≤ i ≤ k. Also, for any 1 ≤ i ≤ k for which b̂i is defined,
the machine may also simulate UPF with oracle b̂i and input π

âi |̂bi
to compute and report

a string called âi if the computation converges. Of course, it depends on the specific
argument how exactly the machine will operate.
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With this oracle machine now defined, one would pass into M the oracle b and the
input consisting of minimal UPF-descriptions πai|bi

for ai given bi for each 1 ≤ i ≤ k.
Supposing that M was properly defined so as to halt on this choice of oracle and input
and to correctly report a, we may then conclude:

K(a | b) ≤ Cb
M(a1, ..., ak | b1, ..., bk, k) +O(1)

≤ len(πa1|b1) + · · · + len(πak|bk
) +K(k) +O(1)

= K(a1 | b1) + · · · +K(ak | bk) +K(k) +O(1).

It is standard practice to instead verbally explain an (intuitive) algorithm which produces
a from b and the other descriptions ai | bi, and then to appeal to the Church-Turing thesis
to conclude there exists a prefix-free oracle machine simulating that process. Several of
the proofs provided here follow this form for the sake of clarity.

One may use this scheme to prove Proposition 1.6.3. It also works for two-part
descriptions. Let N be any standard collection of finitary objects and n ∈ N . Given
n ∈ A for some finite set A ⊂ N , we have that K(n) ≤ K(A) + log |A| + O(1). That
is, a description (of a computable enumeration) of A, together with a description for
the index i when n appears in that enumeration of A, suffice to describe n as the i-th
element enumerated into A. In this sense, the pair (A, i) forms a two-part description for
n. Two-part descriptions are also important in the study of algorithmic statistics [71].

An easy consequence of UPF being prefix-free is the Kraft Inequality.

Theorem 1.6.4 (Kraft Inequality, Proposition 3.7.1 of [11]).

∑
σ∈2<ω

2−K(σ) ≤ 1.

Next, Chaitin’s Counting Theorem offers useful bounds for the behavior of K on the
strings of some fixed length. This essentially follows from the universality of UPF.

Theorem 1.6.5 (Chaitin’s Counting Theorem [8], Theorem 3.7.6 of [11]). There exists
a constant c ∈ ω such that for any n, r ∈ ω,

(i) max {K(σ) : σ ∈ 2n} = n+K(n) ± c, and

(ii) |{σ ∈ 2n : K(σ) ≤ n+K(n) − r}| ≤ 2n−r+c.

It is interesting to note that the theory of prefix complexity (an algorithmic entropy
notion) mimics that of Shannon entropy [26], and that K satisfies the same linear

23



inequalities true for all inputs as Shannon entropy H up to a logarithmic term in the
sum of the lengths of the strings involved. This may be made precise by translating
between random variables with finite range and finite binary strings, as is done in [15].

1.7 Lifting Prefix Complexity to Reals
Prefix complexity may be lifted to infinitary objects via finitary approximations. We
state the following results how they were originally presented: over Euclidean space.
Analogous statements also hold over Cantor space.

1.7.1 Lifting Conditional Complexity

Take any ambient dimensions m,n ∈ ω, points x ∈ Rm and y ∈ Rn, and precision-
levels r, s ∈ ω. A straightforward definition of the complexity of x given y up to these
precision-levels would be to evaluate the complexity: K(x ↾ r | y ↾ s).

An alternative lift comes from the intuition offered by A. Shen and N. Vereshchagin
in [59]: that for rationals p ∈ Qm and q ∈ Qn, the conditional complexity K(p | q)
could be understood as the complexity of the problem Q → P , where P is the problem
“construct p” and Q is the problem “construct q.” So, the lift of conditional complexity
to arbitrary subsets X ⊆ Rm given Y ⊆ Rn should reflect the complexity of constructing
a point p ∈ X ∩ Qm from any point q ∈ Y ∩ Qn. This definition was made explicit by
J. Lutz and N. Lutz in [34].

In particular, they defined the conditional prefix complexity of X given Y to be:

K (X | Y ) := max
q

{
min

p
{K (p | q) : p ∈ X ∩ Qm} : q ∈ Y ∩ Qn

}
,

or +∞ if either set is empty. Notice that this notion of complexity is governed only by
the rational elements of the sets involved. Unconditionally, the prefix complexity of X is:

K (X) := min {K (p) : p ∈ X ∩ Qm} ,

or +∞ whenever X contains no rationals. Thus, a set is as simple as its simplest, rational
element.

Now, for any x ∈ Rm and y ∈ Rn, the conditional prefix complexity of x to precision-
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level r given y to precision-level s is:

Kr|s (x | y) := K (B2−r(x) | B2−s(y)) ,

while the prefix complexity of x to precision-level r (possibly given q ∈ Qn) is:

Kr(x | q) := K(B2−r(x) | {q}), and

Kr(x) := K(B2−r(x)).

In the coming subsection, we will compare Kr|s(x | y) to K(x ↾ r | y ↾ s).
It will also serve us to identify rational elements of a subset which witness the set’s

prefix complexity. We borrow the nomenclature of A Case. and J. Lutz [6].

Definition 1.7.1. Let X ⊆ Rm, and suppose x ∈ X ∩ Qm satisfies K(x) ≤ K(X) + ε

for some ε ≥ 0. We say that x is an ε-approximate K-minimizer of X. And if this holds
for ε = 0, then x is a K-minimizer of X.

1.7.2 Results on Lifted Conditional Complexity

We recall two lemmas about Kr|s known as its linear sensitivities.

Lemma 1.7.2 (Linear Sensitivity of Kr in r; Lemma 3.8 of [6]). For all m ∈ ω, there
exists c ∈ ω such that for all x ∈ Rm and r,∆r ∈ ω,

Kr(x) ≤ Kr+∆r(x) ≤ Kr(x) +K(r) +m∆r + a∆r + c,

where a∆r := K(∆r) + 2 log
(⌈

1
2 logm

⌉
+ ∆r + 3

)
+
(⌈

1
2 logm

⌉
+ 3

)
m+K(m) + 2 logm.

Lemma 1.7.3 (Linear Sensitivity of Kr|s in s; Lemmas 7 and 8 of [34]). For all m,n ∈ ω,
there exists c ∈ ω such that for all x ∈ Rm, y ∈ Rn, q ∈ Qn, and r, s,∆r,∆s ∈ ω,

(i) Kr(x | q) ≤ Kr+∆r(x | q) ≤ Kr(x | q) +m∆r + 2 log(1 + ∆r) +K(r,∆r) + c;

(ii) Kr|s(x | y) ≥ Kr|s+∆s(x | y) ≥ Kr|s(x | y) − n∆s− 2 log(1 + ∆s) +K(s,∆s) + c.

A consequence of the linear sensitivities is that one may approximate the conditional
prefix complexity of Euclidean points more simply via dyadic truncations.
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Lemma 1.7.4 (Lemma A.1 of [40]). For all m,n ∈ ω, there exists c ∈ ω such that for
all x ∈ Rm, q ∈ Qn, and r ∈ ω,

|Kr (x | q) −K (x ↾ r | q)| ≤ K (r) + c.

Lemma 1.7.5 (Lemma A.3 of [40]). For all m,n ∈ ω, there exists c ∈ ω such that for
all x ∈ Rm, y ∈ Rn, and r, s ∈ ω,

∣∣∣Kr|s (x | y) −K (x ↾ r | y ↾ s)
∣∣∣ ≤ K (r) +K (s) + c.

One may then conclude an approximate symmetry of information for prefix complexity
on Euclidean space. Again, this is a weak form of symmetry of information.

Theorem 1.7.6 (Approximate Chain Rule; Lemma 4 of [40]). For any m,n ∈ ω, x ∈ Rm,
y ∈ Rn, and r ≥ s ∈ ω,

(i)
∣∣∣Kr|r(x | y) +Kr(y) −Kr(x, y)

∣∣∣ ≤ Om,n(log r) +On(log log ||y||) +Om,n(1);

(ii)
∣∣∣Kr|s(x | x) +Ks(x) −Kr(x)

∣∣∣ ≤ Om(log r) +Om(log log ||x||) +Om(1).

We note that when computing with infinitary objects such as infinite binary strings
or Euclidean reals, one must distinguish between oracle and conditional accesses. While
oracle access permits computations with approximations of the given data to arbitrary
precisions, conditional access places a firm limit on the precision-level to which one may
access the given data.

Lemma 1.7.7 (Lemma 14 of [34]). For all m,n ∈ ω, there exists a constant c ∈ ω such
that, for all x ∈ Rm, y ∈ Rn, and r, s ∈ ω,

Ky
r (x) ≤ Kr|s(x | y) +K(s) + c.

1.8 Semimeasures
This section presents an alternative approach to measuring the information-content or
algorithmic-complexity of finitary objects through mass distribution.

1.8.1 Discrete Semimeasures

A function m : 2<ω → [0, 1] is said to be a discrete semimeasure on 2ω if it satisfies∑
σ∈2<ω m(i) ≤ 1. There exists a (reference) optimal lower-semicomputable discrete
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semimeasure m on 2ω. That is, if m is any other lower-semicomputable discrete semimea-
sure, there exists a constant β > 0 such that for all σ ∈ 2<ω, we have m(σ) ≥ β ·m(σ).
Refer to Section 4.3 of [29] for more details.

There is a natural connection between prefix complexity and lower-semicomputable
discrete semimeasures. Levin originally introduced the concept of an information con-
tent measure, or an upper-semicomputable, partial function F :⊆ 2<ω → ω satisfying∑

σ∈2<ω 2−F (σ) ≤ 1, as described in [11]. By the Kraft Inequality (1.6.4) and the universal-
ity of UPF, K is considered to be minimal among the the information content measures.
Similarly, 2−K(·) is maximal (i.e., optimal) among the lower-semicomputable discrete
semimeasures.

This relationship is made more precise in Levin’s Coding Theorem. We start by
reviewing two classes of lower-semicomputable discrete semimeasures on 2<ω.

Definition 1.8.1. Fix an oracle machine M on 2<ω, and σ ∈ 2<ω.

• Let RM(σ) := 2−CM (σ) denote the algorithmic probability of σ under M .

• Let QM(σ) := ∑
M(π)↓=σ 2− len(π) denote the a priori probability of σ under M .

When M is the reference universal PF oracle machine, simply write R ≡ RUPF and
T ≡ TUPF .

Levin proved that m, R, and Q all capture essentially the same quantity.

Theorem 1.8.2 (Levin’s Coding Theorem, Theorem 3.9.4 of [11]). For any σ ∈ 2<ω,

K(σ) = − logR(σ) = − logQ(σ) ±O(1) = − log m(σ) ±O(1).

One informal corollary of the Coding Theorem is that: having many long UPF-
descriptions implies having at least one short UPF-description. To see this, suppose Π is a
collection of strings π ∈ 2<ω all of a common length ℓ ∈ ω and serving as UPF-descriptions
for the string σ ∈ 2L. Then, the a priori probability of σ will be at least:

Q(σ) = λ([{π ∈ 2<ω : UPF(π) ↓= σ}]) ≥ λ([Π]) =
∑
π∈Π

2− len(π) = |Π| · 2−ℓ.

Thus, by the Coding Theorem 1.8.2, σ has an appropriately shorter UPF-description:

K(σ) ≤ − logQ(σ) +O(1) ≤ ℓ− log |Π| +O(1).
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1.8.2 Continuous Semimeasures

Discrete semimeasures do not take into account the topology of Cantor space, while
a continuous semimeasure does by considering how mass distributes from a string to
its extensions. In particular, a function M : 2<ω → [0, 1] is said to be a continuous
semimeasure on 2ω if it satisfies M(σ) ≥ M(σ⌢0) + M(σ⌢1) for all σ ∈ 2<ω. As in
the discrete case, there exists a reference optimal lower-semicomputable continuous
semimeasure M on 2ω. That is, if M is any other lower-semicomputable continuous
semimeasure, there exists a constant β > 0 such that for all σ ∈ 2<ω, we have M(σ) ≥
β ·M(σ). Refer to Section 4.5 of [29] for more details.

We denote by KM(σ) := − log M(σ) the a priori complexity of a string σ ∈ 2<ω. It
is interesting to compare this complexity notion to prefix complexity. There are few
satisfying bounds on their difference. Refer to [70] and Section 4.5.5 of [11] for more
details.

It is important to mention the fundamental role that constructive martingales have
played in the development of algorithmic information theory. By 2000, J. Lutz had
introduced algorithmically-restricted betting strategies called constructive supergales as a
generalization to the constructive martingales in C. Schnorr’s early work on algorithmic
randomness [31, 58]. Let us see why, for a certain class of premeasures, these betting
strategies are interchangeable with the lower-semicomputable continuous semimeasures.

Given a premeasure ρ on 2ω, a ρ-supergale is a map δ : 2<ω → [0,+∞) such that

δ(σ) · ρ([σ]) ≥ δ(σ⌢0) · ρ([σ⌢0]) + δ(σ⌢1) · ρ([σ⌢1]),

for each σ ∈ 2<ω. If indeed ρ = ρs for some s ≥ 0, simply refer to δ as an s-supergale.
A ρ-supergale is said to succeed on a subset X ⊆ 2ω if for each x ∈ X, we have

lim supr→∞ δ(x ↾ r) = +∞. Thus, to succeed on an infinite sequence x ∈ 2ω is to earn
arbitrarily much by taking bets on new bits of x following the betting strategy δ.

It had already been shown by J. Lutz in [30] that the Hausdorff dimension of a subset
X ⊆ 2ω may be characterized by the ability for s-supergales to succeed on X. That is,

dimH(X) = inf {s ≥ 0 : there exists an s-supergale succeeding on X} . (1.5)

Lutz’s subsequent idea was to restrict supergales by an effectivity condition and see
whether they could still recover classical Hausdorff dimension. Call a ρ-supergale to be
constructive if it is lower-semicomputable. If ρ is length-invariant, strictly-positive, and
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computable on the cylinder sets B (e.g., any s-dimensional Hausdorff premeasure ρs with
computable s ≥ 0), it holds that δ is a (constructive) ρ-supergale if and only if the map
M : σ 7→ δ(σ) · ρ([σ]) is a (lower-semicomputable) continuous semimeasure.

Thus, continuous semimeasures are also related to Hausdorff dimension in 2ω, and we
may extend the notion of success to them as follows: a continuous semimeasure M is said
to ρ-succeed on X ⊆ 2ω if for each x ∈ X, we have lim supr→∞ M(x ↾ r)/ρ([x ↾ r]) = +∞.
If M is some lower-semicomputable continuous semimeasure which ρ-succeeds on X,
then, by optimality, M also ρ-succeeds on X. When ρ = ρs, we refer to this as s-success.

From this perspective, the language of constructive supergales ports into the language
of lower-semicomputable continuous semimeasures.

Another characterization of s-success for lower-semicomputable continuous semimea-
sures has to do with the existence of strong Solovay-s-tests of arbitrarily small prefix
s-weight. Call (qn)n∈ω ⊆ Q>0 rapidly decreasing if limn→∞ qn · 2n = 0.

Theorem 1.8.3. Fix X ⊆ 2ω and computable s > 0. Then the following are equivalent.

(i) There is a uniformly-c.e. sequence of strong Solovay-s-tests (Vn)n and a computable,
rapidly decreasing sequence (qn)n where each Vn covers X and satisfies PWs(Vn) ≤
qn;

(ii) Some constructive s-supergale succeeds on X;

(iii) Some lower-semicomputable continuous semimeasure s-succeeds on X; and

(iv) M s-succeeds on X.

Proof. It suffices to prove (i) ⇐⇒ (iii). First, suppose (i). For each n ∈ ω, the map

Mn(σ) := 1
qn

PWs({τ ∈ Vn : σ ⪯ τ})

is a lower-semicomputable continuous semimeasure. And, whenever σ ∈ Vn, it holds
that Mn(σ) ≥ 1

qn
· 2−s·len(σ). Now, define another lower-semicomputable continuous

semimeasure

M(σ) :=
∑
n∈ω

Mn(σ)
2n+1 .

Then, for each σ ∈ Vn, we have M(σ) ≥ 1
qn

· 2−(n+1)−s·len(σ). Now, if x ∈ X and X is
covered by each Vn, it holds that for each n ∈ ω, there exist infinitely many r ∈ ω for
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which x ↾ r ∈ Vn. Hence,

lim sup
r→∞

M(x ↾ r)
2−s·len(x↾r) = lim sup

r→∞
M(x ↾ r) · 2s·r ≥ 1

qn

· 2−(n+1) → +∞

as n → +∞ since (qn)n is rapidly decreasing. Thus, M s-succeeds on X.
In the other direction, suppose (iii). Fix a computable, rapidly decreasing sequence

(qn)n and define for each n ∈ ω the c.e. set:

Vn :=
{
σ ∈ 2<ω : M(σ) · 2s·len(σ) ≥ 1

qn

}
.

Notice that if P ⊆ Vn is prefix-free, then

DWs(P) =
∑
σ∈P

2−s·len(σ) ≤ qn ·
∑
σ∈P

M(σ) ≤ qn,

so PWs(Vn) ≤ qn for all n ∈ ω. Finally, for a fixed n ∈ ω, if x ∈ X, then M s-
succeeding on X implies there are infinitely many r ∈ ω for which M(x ↾ r) · 2s·r ≥ 1

qn
,

or x ↾ r ∈ Vn. So, each Vn is a strong Solovay-s-test covering X, and the sequence (Vn)n

is uniformly-c.e.

1.9 Effective Hausdorff Dimension
J. Lutz was the first to introduce a refinement to Hausdorff dimension in the form of
constructive dimension [31], which could distinguish between subsets of zero Hausdorff
dimension by their algorithmically-exploitable patterns. Shortly after, E. Mayordomo
demonstrated this quantity matched an algorithmic information density involving Kol-
mogorov complexity first studied by L. Staiger [45,63]. In this section, we review a few of
the characterizations for effective dimension, but not necessarily in their historical order.

For simplicity, we define the effective dimension notions in this section over 2ω. With
slight adjustments, some may be extended to any Rm.

Inspired by the definition of the local dimension of an outer measure in K. Falconer’s
book [12], define local dimension for outer measures and semimeasures as follows.

Definition 1.9.1. Let µ either be a discrete semimeasure, continuous semimeasure, or
outer measure on 2ω. Then the (lower) local dimension of a subset X ⊆ 2ω with respect
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to µ is defined as:

dimloc µ(X) = sup
x∈X

lim inf
r→∞

− log µ([x ↾ r])
r

,

where µ([x ↾ r]) is understood as µ(x ↾ r) whenever µ is a semimeasure.

In the language of supergales, the map δ(σ) := 2s·len(σ)·M(σ) is an optimal constructive
s-supergale whenever s ≥ 0 is left-c.e. It follows from our Theorem 1.8.3 that dimloc M
matches J. Lutz’s constructive dimension [31, 32]. That is, for any X ⊆ 2ω,

dimloc M(X) = inf {s ≥ 0 : there exists a constructive s-supergale succeeding on X}

=: cdim(X).

In light of (1.5), we may consider cdim to be an effective version of Hausdorff dimension.
We will cite some other asymptotic coincidences further justifying this view.

In [45], Mayordomo proved that Lutz’s constructive dimension of a point x matches
the lower incompressibility ratio of prefix Kolmogorov complexity of x:

cdim(X) = κ(X) := sup
x∈X

lim inf
r→∞

K(x ↾ r)
r

= dimloc m(X),

where the last equality follows from the Coding Theorem 1.8.2. So M and m produce
the same local dimension notion on 2ω. Note that by definition, dimloc M is itself the
lower incompressibility ratio with respect to a priori complexity:

dimloc M(X) = sup
x∈X

lim inf
r→∞

KM(x ↾ r)
r

.

One might also attempt to effectivize the definition of classical Hausdorff dimension
directly. Suppose U is a Martin-Löf-s-test covering X ⊆ 2ω. Then, U acts as an effective
witness to X being s-null. In analogy with the definition of Hausdorff dimension in (1.1),
define the effective Hausdorff dimension of X ∈ 2ω to be:

effdim(X) := inf {s ≥ 0 : X is ML-s-null} .

Note that the same could be done for any other of the effective test notions defined
above. We prefer to work with Martin-Löf-randomness because it admits universal tests.
In particular, for each left-c.e. s > 0, there exists a universal ML-s-test U s. This means
that if U is an ML-s-test covering some subset X ⊆ 2ω, then so too will U s cover X. The
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existence of such a U s implies the pointwise stability of effective Hausdorff dimension.
That is, for any X ⊆ 2ω,

effdim(X) = sup
x∈X

effdim({x}).

Martin-Löf-s-randomness relates to success by constructive s-supergales. That is, if
there exists a constructive s-supergale succeeding on X, then X will be ML-t-null for
all left-c.e. t > s. Conversely, if s is left-c.e. and X is ML-s-null, then there exists a
constructive s-supergale succeeding on X. Therefore, cdim(X) = effdim(X) on all sets
X ⊆ 2ω.

In his doctoral dissertation, N. Lutz introduced the map κ(X) := 2−K(X), an outer
measure on 2ω (originally, Rm) which possesses many algorithmic optimality properties as
explored in both [35, 36]. In particular, J. Lutz and N. Lutz showed that κ(X) is locally
optimal among all the other strongly finite, lower-semicomputable outer measures on 2ω,
and that any locally optimal outer measure µ has local dimension dimlocµ matching the
lower incompressibility ratio of prefix complexity [35].

We now summarize these standard asymptotic coincidences in the following theorem.

Theorem 1.9.2 (Effective Dimension). For any X ⊆ 2ω, we have

effdim(X) = dimloc M(X) = dimloc m(X) = dimloc κ(X) = cdim(X) = κ(X).

We will use dim(·) as a generic placeholder for any one of those listed in Theorem 1.9.2
over either Cantor space or Euclidean space. And dim(x) will stand for dim({x}) for any
x ∈ 2ω.

We further note that effectivized packing dimension (or strong dimension) coincides
with the upper incompressibility ratio of prefix complexity, as first shown in [2]. So, we
fix the notation:

Dim(X) := κ(X) = sup
x∈X

lim sup
r→∞

K(x ↾ r)
r

.

1.10 Effective Dimension Variants
We review two variants of effective dimension.
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1.10.1 Mutual Dimension

One variant of effective dimension is mutual dimension, which was originally defined
in [6]. It intuitively captures the algorithmic information shared by two infinitary objects
in the limit. In Shannon information theory, mutual information is a measure of the
correlation between two distributions. A. Case and J. Lutz’s algorithmic notion of mutual
information serves as a refinement of the classical notion. Namely, the (conditional)
mutual information between two finitary objects a, b ∈ N given c ∈ N is

I(a : b | c) := K(a | c) −K(a | b, c).

Extending their notation slightly, we define the mutual information between subsets
X ⊆ Rm and Y ⊆ Rn as:

I(X : Y ) := min {I(p : q) : p ∈ X ∩ Qm and q ∈ Y ∩ Qn} ,

or zero if taken over the empty set. Then the mutual information between x ∈ Rm to
precision-level r and y ∈ Rn to precision-level s is defined as:

Ir:s(x : y) := I(B2−r(x) : B2−s(x)),

Both I and Ir:s inherit many of their expected properties such as a chain rule and
symmetry from K and Kr|s. In particular, a slight generalization to Theorem 4.10 in [6]
for distinct precision-levels proves the chain rule for Ir:s.

Theorem 1.10.1 (Chain Rule for Mutual Information, c.f. Theorem 4.10 of [6]). For all
x ∈ Rm, y ∈ Rn, and r, s ∈ ω,

Ir:s(x : y) = Kr(x) +Ks(y) −Kr,s(x, y) ± (o(r) + o(s))

= Kr(x) +Ks|r(y | x) ± (o(r) + o(s)).

Case and Lutz further defined the lower and upper mutual dimensions of x ∈ Rm and
y ∈ Rn as follows:

mdim(x : y) := lim inf
r→∞

Ir:r(x : y)
r

, and Mdim(x : y) := lim sup
r→∞

Ir:r(x : y)
r

.

Both mutual dimensions possess a few special properties. For instance, if x ∈ Rm

and y ∈ Rn, then 0 ≤ mdim(x : y) ≤ min {mdim(x),mdim(y)}. As well as symmetry:
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mdim(x : y) = mdim(y : x). Analogous statements hold for Mdim.

1.10.2 Conditional Dimension

A conditional version of effective dimension was first defined in [34] using the lifted
conditional prefix complexity Kr|s. The lower and upper conditional dimensions of
x ∈ Rm given y ∈ Rn were defined as:

dim(x | y) = lim inf
r→∞

Kr|r(x | y)
r

, and Dim(x | y) = lim sup
r→∞

Kr|r(x | y)
r

.

Conditional dimension may equivalently be characterized in terms of semimeasures
and supergales as in Theorem 1.9.2.

These conditional dimensions were shown to relate with the weak and strong effective
dimensions as follows:

Theorem 1.10.2 (Chain Rule for Conditional Dimension; Corollary 13 of [34]).

dim(x) + dim(y | x) ≤ dim(x, y) ≤ dim(x) + Dim(y | x) ≤ Dim(x, y) ≤ Dim(x) + Dim(y | x).

1.10.3 Results on Mutual and Conditional Dimensions

Both mutual dimensions behave predictably under computable, uniformly-continuous
maps. We cite here just one corollary of this robustness.

Theorem 1.10.3 (Preservation of Mutual Dimension; Corollary 8.3 of [6]). If f : Rm →
Rk and g : Rn → Rℓ are computable and bi-Lipschitz, then for all x ∈ Rm and Rn,

mdim(f(x) : g(y)) = mdim(x : y),

Mdim(f(x) : g(y)) = Mdim(x : y).

In his dissertation [52], J. Reimann argues why effective dimension is also preserved
under bi-computable, (locally) bi-Lipschitz continuous maps. This fact was used by
N. Lutz to confirm an analog of Marstrand’s Projection Theorem for the effective
dimension of points [37]. Results like these mimic the preservation of Hausdorff dimension
under locally bi-Lipschitz continuous maps (e.g., Corollary 2.4 in [12]). We will expand
on this later in Section 2.2.

Finally, we summarize the known relations between mutual, conditional, and effective
dimensions.
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Proposition 1.10.4. For all x ∈ Rm and y ∈ Rn,

dim(x | y) ≤ dim(x) − mdim(x : y) ≤ Dim(x | y),

dim(x | y) ≤ Dim(x) − Mdim(x : y) ≤ Dim(x | y).

We note that two of these inequalities were already proved in Corollary 11 of [34]. Our
contribution is to add the uppermost bound in the top line, and the lowermost bound in
the bottom line. All of these inequalities follow by re-expressing mutual dimension using
the chain rules for Ir:r and Kr|r as in Theorems 1.10.1 and 1.7.6, respectively, and then
distributing the limits inferior or superior appropriately over those terms.

1.11 Complexity Characterizations of Algorithmic Ran-
domness

1.11.1 Algorithmic Discrepancies

We fix some notation for the quantitative discrepancy between a finitary object’s algo-
rithmic entropy and its mass according to some premeasure.

Definition 1.11.1. Let ρ be a premeasure on 2ω. Define for any σ ∈ 2<ω its:

• A priori discrepancy: ∆Mρ(σ) := KM(σ) + log ρ([σ]) = log ρ([σ])
M(σ) ,

• Prefix discrepancy: ∆Pρ(σ) := K(σ) + log ρ([σ]) =∗ log ρ([σ])
m(σ) .

When ρ = ρs, simply write ∆Ms and ∆Ps.

1.11.2 Complexity Characterizations of Algorithmic Randomness

It turns out that these algorithmic discrepancies characterize the various s-dimensional
randomness notions defined above.

Theorem 1.11.2. Let s ≥ 0 be left-c.e. and x ∈ 2ω. Then x is:

• ML-s-random ⇐⇒ x is weak Chaitin-s-random: ∆Ps(x ↾ r) ≥ O(1), [68];

• Solovay-s-random ⇐⇒ x is strong Chaitin-s-random: ∆Ps(x ↾ r) → ∞, [5, 68];

• Strong ML-s-random ⇐⇒ ∆Ms(x ↾ r) ≥ O(1), [5];
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• Vehement ML-s-random ⇐⇒ x is strong ML-s-random;

• Strong Solovay-s-random ⇐⇒ ∆Ms(x ↾ r) → ∞, [48].

In light of these characterizations, one may argue on the level of discrete or continuous
semimeasures rather than covers in order to effectivize results on Hausdorff dimension.

1.12 Point-to-Set Principles
In this context, a point-to-set (PTS) principle will characterize the fractal dimension
or measure content of a subset by some local dimension or measure assigned to its
elements. We summarize the few PTS principles known for Hausdorff dimension and the
s-dimensional Hausdorff outer measures via algorithmically-restricted quantities.

1.12.1 PTS for Hausdorff Dimension

Certain fractal dimension notions have pointwise, algorithmic characterizations (over
simple spaces such as Cantor space and Euclidean space). This was originally shown for
Hausdorff dimension in 2017 by J. Lutz and N. Lutz [34].

Theorem 1.12.1 (Point-to-Set Principle; Theorem 1 of [34]). For any X ⊆ 2ω or
X ⊆ Rm, we have

dimH X = min
B∈2≤ω

sup
x∈X

dimB(x).

Notably, this implies that for each subset X, there exists an oracle B ∈ 2≤ω which
is powerful enough to simulate Hausdorff dimension by ML-B-s-tests. Any such oracle
is called a Hausdorff oracle for X. An analogous formula holds for classical packing
dimension (see Theorem 2 of [34]), swapping weak effective dimension dim for strong
dimension: Dim.

The main insight used to prove the Point-to-Set Principle involves the ability to
build for a fixed set X ⊆ Rm an oracle B with knowledge of how X intersects with
any given dyadic cube from Qm. Arbitrary covers of X exhibiting dimH X may be
approximated using covers comprising dyadic cubes, and so the Hausdorff dimension
of X is the supremum of the size of the intersection with X along nested sequences of
dyadic cubes. Suppose that the intersection of a nested sequence intersecting with X is

36



the singleton set containing x ∈ X. Then dimB(x) exactly captures how much dimension
X takes on at x.

In practice, the power of the Point-to-Set Principle is in proving lower-bounds for
Hausdorff dimension. As remarked to me by Ryan Bushling, one might as well consider
this a local-to-global principle for the following reason: in order to witness a lower bound
on dimH X, it is not enough to find a single sufficiently-random element x ∈ X, for any
countable number of reals could be coded into an oracle. Instead, one must demonstrate
the existence of many highly-complex elements of X, which requires knowledge of a large
portion of the set to do.

The Point-to-Set Principle has found applications across geometric measure theory,
including in bounding the Hausdorff dimension of Furstenberg sets [40, 65], lineal ex-
tensions [4], distance sets [1], and pinned-distance sets [67]; as well as in extending the
Marstrand-Mattila Projection Theorem [66].

Well before the full Point-to-Set Principle was proved, L. Staiger [63] and B. Ryabko
[56,57] had already observed versions of the Point-to-Set Principle for simply-definable
classes such as Σ0

2-classes. This was slightly generalized by J. Hitchcock in [17] in
what he calls a correspondence principle between constructive dimension and Hausdorff
dimension [17]. The spirit of any correspondence principle is to characterize a classical
notion by unrelativized, effective means (i.e., avoiding oracles).

Theorem 1.12.2 (Correspondence Principle for Hausdorff dimension, Theorem 5.3
of [17]). For any Σ0

2-class X ⊆ 2ω, we have

dimH X = dim(X).

Hitchcock further showed that this correspondence broke down immediately beyond
this level of the lightface Borel hierarchy.

1.12.2 PTS for Hausdorff Measures

The original Point-to-Set Principle has recently been refined to the s-dimensional Haus-
dorff outer measures by P. Lutz and J. Miller [41]. These results also expand on the
complexity characterizations of various partial randomness notions from Theorem 1.11.2.

Theorem 1.12.3. For every X ⊆ 2ω and s ≥ 0,

log Hs(X) =+ inf
B∈2≤ω

sup
x∈X

lim inf
r→∞

∆MB
s (x ↾ r),
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and X is not σ-finite with respect to Hs if and only if

(∀B ∈ 2≤ω)(∃x ∈ X)
[
lim inf

r→∞
∆MB

s (x ↾ r) = ∞
]
.

By Theorem 1.11.2, X is not σ-finite in dimension s if and only if there is a strong
Solovay-B-s-random element in X for every oracle B.

Corollary 1.12.4. For every X ⊆ 2ω and s ≥ 0,

Hs(X) > 0 ⇐⇒ (∀B ∈ 2≤ω)(∃x ∈ X)
[
lim inf

r→∞
∆MB

s (x ↾ r) > −∞
]

⇐⇒ (∀B ∈ 2≤ω)(∃x ∈ X)
[
lim inf

r→∞
∆PB

s (x ↾ r) > −∞
]
,

Hs(X) < ∞ ⇐⇒ (∃B ∈ 2≤ω)
[
sup
x∈X

lim inf
r→∞

∆MB
s (x ↾ r) < ∞

]
.

Again by Theorem 1.11.2, X is not s-null if and only if there is an ML-B-s-random
element in X for every oracle B.

In effect, these refined point-to-set principles demonstrate the usefulness of a priori
complexity–defined by continuous semimeasures–in characterizing not just Hausdorff
dimension but also the s-dimensional Hausdorff outer measures.
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Chapter 2 |
Robustness of Conditional Kol-
mogorov Complexity

2.1 Robustness of the Lift

2.1.1 An Alternate Lift

Recall that in Section 1.7, we specified the standard lift of conditional prefix complexity
to Euclidean space. We claim that the order of maximum and minimum in its definition
makes no difference asymptotically. That is, suppose we were to alternatively define for
B ⊆ Rm and C ⊆ Rn:

K(B | C) := min
p

{
max

q
{K (p | q) : q ∈ C ∩ Qn} : p ∈ B ∩ Qm

}
,

and for x ∈ Rm, q ∈ Qm, y ∈ Rn, and r, s ∈ ω:

Kr|s(x | y) := K(B2−r(x) | B2−s(y)), and

Ks(p | y) := K({p} | B2−s(y)).

Theorem 2.1.1 (Robustness of Euclidean Conditional Kolmogorov Complexity). Let
m,n ∈ ω. Then, for any x ∈ Rm, y ∈ Rn, and r, s ∈ ω,

Kr|s(x | y) = Kr|s(x | y),

where the equality holds up to 2K(r) + 2K(s) +Om,n(1).

We will obtain the above theorem by applying the same proof methods found in [6]
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on the linear sensitivities of K in its precision parameters. In particular, both forms K
and K are well-approximated by dyadic truncation as in Lemma 1.7.5. We first recall an
important geometric fact from [6]. In Euclidean space Rm, it takes a sufficiently small
scaling factor γ > 0 in order to guarantee at least one node in the lattice γZm lies in a
given ball of fixed radius.

Observation 2.1.2 (Observation 3.4 in [6], Observation 3 in [34]). For every m ∈ ω,
r > 0, and open ball B ⊆ Rm of radius 2−r,

B ∩ 2−(r+⌈log
√

m⌉)Zm ̸= ∅.

Now, we prove linear sensitivities for the alternate lift K.

Lemma 2.1.3 (Linear Sensitivity in the Condition for K). For all m,n ∈ ω, p ∈ Qm,
y ∈ Rn, and s,∆s ∈ ω,

Ks+∆s (p | y) ≤ Ks (p | y) ≤ Ks+∆s (p | y) + n∆s+K(s) +On(log ∆s) +On(1).

Proof. The first inequality follows by definition. Unpacking the notation, it suffices to
show that for any fixed q ∈ B2−s(y) ∩ Qn,

K (p | q) ≤ Ks+∆s (p | y) + n∆s+K(s) +On(log ∆s) +On(1).

Note that we have the ability to compute a rational element of the smaller open ball
B2−(s+∆s)(y) from the fixed, rational element q of the larger open ball B2−s(y): by
Observation 2.1.2, there exists an integer tuple z ∈ Zn such that 2−s∗

z ∈ B2−(s+∆s)(y− q),
where s∗ = s+ ∆s+ ⌈log

√
n⌉. And set q′ := 2−s∗

z + q ∈ B2−(s+∆s)(y). Notice that

||z|| = 2s∗
∣∣∣∣∣∣2−s∗

z
∣∣∣∣∣∣ ≤ 2s∗ (2−s + 2−(s+∆s)

)
= 2⌈log

√
n⌉ (2∆s + 1

)
≤ 2∆s+⌈log

√
n⌉+1.

By (1.4), we have

K(z) ≤ n∆s+On(log ∆s) +On(1).

So, we may conclude

K (p | q) ≤ K (p | q′) +K (q′ | q) +On(1)

≤ Ks+∆s (p | y) +K (z) +K (s,∆s) +On(1)
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≤ Ks+∆s (p | y) + n∆s+K(s) +On(log ∆s) +On(1).

Lemma 2.1.4 (Linear Sensitivity in the Input for K). For all m,n ∈ ω, x ∈ Rm, y ∈ Rn,
and r,∆r, s ∈ ω,

Kr|s (x | y) ≤ Kr+∆r|s (x | y) ≤ Kr|s (x | y) +m∆r +K(r) +Om(log ∆r) +Om,n(1).

Proof. The first inequality follows by definition. Unpacking the notation, it suffices to
show for any fixed p ∈ B2−r(x) ∩ Qm that

Kr+∆r|s (x | y) ≤ Ks (p | y) +m∆r +K(r) +Om(log ∆r) +Om,n(1).

Note that we have the ability to compute some element of the smaller open ballB2−(r+∆r)(x)
from a fixed, rational element p of the larger open ball B2−r(x): by Observation 2.1.2,
there exists an integer tuple z ∈ Zm for which 2−r∗

z ∈ B2−(r+∆r)(x − p), where r∗ =
r + ∆r + ⌈log

√
m⌉. Then, we take p′ := p+ 2−r∗

z ∈ B2−(r+∆r)(x). Thus, by (1.4),

Kr+∆r|s (x | y) ≤ Ks (p′ | y)

≤ Ks (p | y) +K (p′ | p) +Om,n(1)

≤ Ks (p | y) +K (z) +K (r,∆r) +Om,n(1)

≤ Ks (p | y) +m∆r +K(r) +Om(log ∆r) +Om,n(1).

Lemma 2.1.5 (Dyadic Truncation Suffices for Condition in K). For all m,n ∈ ω,
p ∈ Qm, y ∈ Rn, and s ∈ ω,

|Ks (p | y) −K (p | y ↾ s)| ≤ K (s) +On(1).

Proof. In one direction, we have that y ↾ s is a rational in a ball about y of radius
2−s

√
n. So, y ↾ s is considered in the evaluation of Ks+log

√
n(p | y). We appeal to linear

sensitivity 2.1.3 in s and use the fact that y ↾ s ∈ B2−s
√

n(y) ∩ Qn to bound Ks(p | y)
from below:

Ks (p | y) ≥ Ks−log
√

n (p | y) − n log
√
n−K(s) −O(log log

√
n) −O(1)

≥ K (p | y ↾ s) −K(s) −O(n log n) −O(1).
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In the other direction, unpacking the notation, it suffices to check that:

K (p | q) ≤ K (p | y ↾ s) +K(s) +On(1)

for any fixed q ∈ B2−s(y) ∩ Qn. Because y ↾ s ∈ B2−s(1+
√

n)(q) ∩ Qn
s is contained in a set

of cardinality no greater than the constant (2(1 +
√
n))n, we may describe y ↾ s using q,

s, and a constant number of extra bits depending on n. So,

K (p | q) ≤ K (p | y ↾ s) +K (y ↾ s | q) +K (s) +On(1)

≤ K (p | y ↾ s) +K(s) +On(1).

Lemma 2.1.6 (Dyadic Truncation Suffices for both Parameters in K). For all m,n ∈ ω,
x ∈ Rm, y ∈ Rn, and r, s ∈ ω,

∣∣∣Kr|s (x | y) −K (x ↾ r | y ↾ s)
∣∣∣ ≤ K(r) +K(s) +Om,n(1).

We could prove this lemma directly using the linear sensitivity of K in r in Lemma 2.1.4.
But there is a simpler proof using dyadic truncation.

Proof. Dropping the logarithmic terms in the precision-levels and norms, and using the
definitions of K and K:

Kr|s (x | y) := min
p

{Ks (p | y) : p ∈ B2−r(x) ∩ Qm}

= min
p

{K (p | y ↾ s) : p ∈ B2−r(x) ∩ Qm} [Lemma 2.1.5]

= Kr (x | y ↾ s)

= K (x ↾ r | y ↾ s) . [Lemma 1.7.4]

Together, the dyadic truncation lemmas 1.7.5 and 2.1.6 imply that K (x ↾ r | y ↾ s)
approximates both Kr|s (x | y) and Kr|s (x | y) up to logarithmic terms in r and s, proving
Theorem 2.1.1.
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2.1.2 Approximation by K-Minimizers

Conditional complexity is not only well-approximated by dyadic truncation, but also by
K-minimizers. In particular, we prove conditional versions of the result from [6] stating
that the lift of conditional complexity to Euclidean space can also be well-approximated
by evaluating the conditional complexity of the corresponding K-minimizers. This will
imply a conditionalized chain rule for conditional complexity.

Our method makes use of some basic facts established in [6] intuitively saying that
any K-minimizer of an open ball represents the information content essentially possessed
by all the other rational points in the ball.

Lemma 2.1.7 (Lemma 4.3 of [6]). Let m,n, ℓ ∈ ω, p ∈ Qm, w ∈ Qℓ, y ∈ Rn, and s ∈ ω.
If q ∈ B2−s(y) ∩ Qn and q∗ is a K-minimizer of B2−s(y), then

K(p | q, w) ≤ K(p | q∗, w) +K(K(q∗)) +On(log s) +On(1).

Corollary 2.1.8 (Corollary 4.4 in [6]). Let m ∈ ω and x ∈ Rm. Suppose p∗ ∈ Qm is a
K-minimizer of B2−r(x), and p ∈ B2−r(x) ∩ Qm is some other nearby rational. Then

K(p∗ | p) = Om(log r) +Om(1).

Now, we may conclude that K-minimizers suffice for computing conditional complexity.
We use here that the two lifts of prefix complexity asymptotically agree: K ≈ K, where
the approximate equality ≈ holds up to sub-linear terms in the precision-levels. For the
rest of the section, we write (in)equalities up to the logarithmic terms:

Om(log r) +On(log s) +Om,n(1). (2.1)

Proposition 2.1.9 (K-minimizers Suffice for Conditional Complexity). Let m,n ∈ ω,
x ∈ Rm, y ∈ Rn, and r, s ∈ ω. If p∗ ∈ Qm and q∗ ∈ Qn are each K-minimizers of
B2−r(x) and B2−s(y), respectively, then

Kr|s(x | y) = K(p∗ | q∗),

where equality holds up to the logarithmic factors given by (2.1).

Proof. Let (p∗, q∗) be the K-minimizers for x and y at precisions r and s, respectively.
Additionally, let (p′, q′) denote a witness pair to Kr|s (x | y), and (p′′, q′′) the same for
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Kr|s (x | y). Then, dropping any logarithmic terms,

Kr|s (x | y) = Kr|s (x | y) [Theorem 2.1.1]

= K (p′′ | q′′)

≤ K (p∗ | q′′)

= K (p∗ | q∗) +K (q∗ | q′′)

= K (p∗ | q∗) [Corollary 2.1.8]

= K (p∗ | p′) +K (p′ | q∗)

≤ K (p′ | q∗) [Corollary 2.1.8]

≤ K (p′ | q′)

= Kr|s (x | y) .

Now, we aim to prove an approximate, conditional chain rule for Kr,s|t. Theorem 1.10.1
captures the approximate, unconditional chain rule for Kr|s, and it implicitly follows by
applying the arguments in Section 4 of [6] under the distinct precision-levels r and s. We
may achieve the conditional version using approximations by K-minimizers.

Lemma 2.1.10. Let m,n, ℓ ∈ ω, x ∈ Rm, y ∈ Rn, z ∈ Rℓ, and r, s, t ∈ ω. Denote by
p∗, q∗, w∗ the K-minimizers of B2−r(x), B2−s(y), and B2−t(z), respectively. Then the
following equalities hold up to the logarithmic factors given by (2.1):

(i) Kr,s|t(x, y | z) = K(p∗, q∗ | w∗),

(ii) Kr|s,t(x, y | z) = K(p∗ | q∗, w∗).

Proof. We have two competing notions of K-minimizer, now: either unconditional, or
conditioned on some extra information ζ ∈ 2<ω. Let p∗ ∈ Qm be a K-minimizer of
B2−r(x) and p∗

ζ ∈ Qm a witness to Kr(x | ζ). We first show that, no matter ζ, the
K-minimizer p∗ also approximately minimizes Kr(x | ζ). By definition,

K(p∗
ζ | ζ) ≤ K(p∗ | ζ)

≤ K(p∗
ζ | ζ) +K(p∗ | p∗

ζ)

≤ K(p∗
ζ | ζ) [Lemma 2.1.7]

= Kr(x | ζ). (2.2)
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This implies a conditional version of Corollary 2.1.8, where for any p ∈ B2−r(x) ∩Qm,

K(p∗
ζ | p, ζ) ≤ K(p∗

ζ | p∗, ζ) [Lemma 2.1.7]

= K(p∗
ζ | ζ) +K(p∗ | p∗

ζ , ζ) −K(p∗ | ζ)

= K(p∗ | p∗
ζ , ζ) [(2.2)]

= 0. [Corollary 2.1.8] (2.3)

Now, we assert Kr,s|t(x, y | z) ≈ K(p∗, q∗ | w∗). Call w′ a maximizing witness to z in
the definition of Kr,s|t(x, y | z), and let (p∗

w′ , q∗
w′) be minimizing witnesses of Kr(x | w′)

and Ks(y | w′), respectively. We follow very similar steps to the proof of Proposition 2.1.9.
In one direction:

Kr,s|t(x, y | z) = Kr,s(x, y | w′) = K(p∗
w′ , q∗

w′ | w′) [Proposition 2.1.9]

= K(p∗
w′ | w′) +K(q∗

w′ | p∗
w′ , w′)

= K(p∗ | w′) +K(q∗
w′ | p∗

w′ , w′) [(2.2)]

≤ K(p∗ | w′) +K(q∗
w′ | p∗, w′) [Lemma 2.1.7]

= K(q∗
w′ | w′) +K(p∗ | q∗

w′ , w′)

≤ K(q∗ | w′) +K(p∗ | q∗, w′) [Lemma 2.1.7]

= K(p∗, q∗ | w′)

≤ K(p∗, q∗ | w∗). [Lemma 2.1.7]

In the reverse direction:

K(p∗, q∗ | w∗) ≤ K(p∗, q∗ | w′)

= K(p∗ | w′) +K(q∗ | p∗, w′)

≤ K(p∗
w′ | w′) +K(q∗ | p∗

w′ , w′) +K(p∗
w′ | p∗, w′) [(2.2)]

= K(q∗ | w′) +K(p∗
w′ | q∗, w′) [(2.3)]

≤ K(q∗
w′ | w′) +K(p∗

w′ | q∗
w′ , w′) +K(q∗

w′ | q∗, w′) [(2.2)]

= K(p∗
w′ , q∗

w′ | w′) [(2.3)]

= Kr,s|t(x, y | z).

Finally, we move on to proving Kr|s,t(x | y, z) ≈ K(p∗ | q∗, w∗). Let (q′, w′) be a pair of
rationals witnesses for y and z in evaluating Kr|s,t(x | y, z), and let p∗

q′,w′ ∈ B2−r(x) ∩Qm
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minimize Kr(x | q′, w′). Then,

Kr|s,t(x | y, z) ≤ K(p∗ | q′, w′) ≤ K(p∗ | q∗, w∗) [Lemma 2.1.7]

≤ K(p∗ | q′, w′)

= K(p∗
q′,w′ | q′, w′) [(2.2)]

≤ K (p′ | q′, w′) = Kr|s,t(x | y, z).

Note that Lemma 1.7.5 stated with extra conditional information follows from an
identical proof to the unconditional version. So, corresponding linear sensitivities hold
for Kr,s|t(x, y | z); and dyadic truncation also approximates prefix complexity well in this
more general case: Kr,s|t(x, y | z) ≈ K(x ↾ r, y ↾ s | z ↾ t).

The other prefix complexity term from the statement of Lemma 2.1.10 is likewise
well-approximated through dyadic truncations:

Kr|s,t(x | y, z) = K(p∗ | q∗, w∗) −K(q∗ | w∗)

= K(x ↾ r, y ↾ s | z ↾ t) −K(y ↾ s | z ↾ t) [Lemma 1.7.5]

= K(x ↾ r | y ↾ s, z ↾ t).

Finally, Lemma 2.1.10 yields the fully conditional chain rule for conditional prefix
complexity over Euclidean space.

Theorem 2.1.11 (Conditional Chain Rule for Conditional Complexity). Let m,n, ℓ ∈ ω,
x ∈ Rm, y ∈ Rn, z ∈ Rℓ, and r, s, t ∈ ω, then the following equalities hold up to the
logarithmic factors given by (2.1):

Kr,s|t(x, y | z) = Kr|t(x | z) +Ks|r,t(y | x, z).

Proof. We simply follow the approximate equalities from the previous result:

Kr,s|t(x, y | z) = K(p∗, q∗ | w∗) [Lemma 2.1.10]

= K(p∗ | w∗) +K(q∗ | p∗, w∗)

= Kr|t(x | z) +Ks|r,t(y | x, z). [Lemma 2.1.10]
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2.2 Effective Dimension under Uniformly Continuous Maps

2.2.1 Uniform and Lipschitz Continuities

A uniformly continuous function is a real function which has a modulus of uniform
continuity.

Definition 2.2.1. A modulus of uniform continuity for the function f : Rm → Rn is any
non-decreasing function µ : ω → ω such that, for all x1, x2 ∈ Rm and r ∈ ω,

||x1 − x2|| ≤ 2−µ(r) =⇒ ||f(x1) − f(x2)|| ≤ 2−r.

In particular, a uniformly continuous function is called Hölder continuous if it has
a modulus of uniform continuity of the form µ(r) = ⌈(r + c)/α⌉ where α > 0 and
c ∈ R; and Lipschitz continuous if it has a modulus of uniform continuity of the form
µ(r) = r +O(1).

An injection f : Rm → Rn is called co-uniformly continuous if it has a uniformly
continuous inverse map. We use the prefix “co” similarly for maps with Hölder continuous
or Lipschitz continuous inverses. Any modulus of uniform continuity for the inverse
of a co-uniformly continuous map f is called an inverse-modulus for f . A bijection
f : Rm → Rm is called bi-uniformly continuous if f is both uniformly continuous and
co-uniformly continuous. We similarly use “bi” in the case of a map and its inverse both
being Hölder or Lipschitz continuous.

Clearly, a map f : Rm → Rn is Lipschitz continuous if and only if there exists L ≥ 0
such that for each x1, x2 ∈ Rm,

||f(x1) − f(x2)|| ≤ L · ||x1 − x2|| .

We refer to L as a Lipschitz constant for f .
Likewise, an injection f : Rm → Rn is co-Lipschitz continuous if and only if there

exists C ≥ 0 such that for each x1, x2 ∈ Rm,

C · ||x1 − x2|| ≤ ||f(x1) − f(x2)|| .

We refer to C as a co-Lipschitz constant for f .
More generally, a map f : Rm → Rn is Hölder continuous if and only if there exist
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constants α > 0 and L > 0 such that for each x1, x2 ∈ Rm:

||f(x1) − f(x2)|| ≤ L · ||x1 − x2||α .

We refer to α as an exponent for f .
There is also a notion of local Lipschitz continuity. Call a function f : Rm → Rn

defined on open set to be locally Lipschitz continuous if for every x ∈ dom(f), there exist
an open neighborhood U ⊆ dom(f) containing x and a constant L > 0 such that for
each x1, x2 ∈ U , we have

||f(x1) − f(x2)|| ≤ L · ||x1 − x2|| .

Analogous local definitions exist for the other uniform continuity notions.

2.2.2 Known Results

Hausdorff dimension is invariant under bi-Lipschitz continuous transformations. This
follows from the classical result about Hausdorff dimension under Hölder continuous
transformations (see Proposition 2.2 of [12]). Yet, there is also an effective proof due to
J. Reimann [52]. Reimann further effectivized the result to get a similar statement for
effective dimension. In particular, let f be a computable, Hölder continuous transfor-
mation on 2ω with exponent α > 0. Then f is α-expansive, meaning for any x ∈ 2ω, we
have len(f(x) ↾ r) ≥ α · r for all but finitely many r ∈ ω. This gives for each x ∈ 2ω and
r ∈ ω:

K(f(x) ↾ (α · r)) ≤+ K(f(x ↾ r)) ≤+ K(x ↾ r).

So, for any X ⊆ 2ω, we have dim(f(X)) ≤ dim(X)/α in the limit (see Theorem
2.27 of [52]). Thus, effective dimension is invariant under bi-computable, bi-Lipschitz
continuous maps. This fact extends to bi-computable maps which are only locally
bi-Lipschitz continuous.

These basic results mimic the data processing inequalities for mutual dimension by
A. Case and J. Lutz [6]. For instance, recall that Theorem 1.10.3 states the mutual
dimension between two reals is invariant under computable, bi-Lipschitz maps. Here, we
establish analogous results for conditional dimension.
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2.2.3 Modulus and Data Processing for Conditional Dimension

We begin our analysis with an analogue of Lemma 6.3 from [6]–which applies to the lift
of mutual information to Euclidean space–to clarify how conditional prefix complexity
behaves under computable, uniformly continuous functions. If f is a computable, Lipschitz
continuous map, then there is a computable real number L ∈ Q+ serving as a Lipschitz
constant for f . That is, f has computable modulus µ(r) := r+ logL. With this in mind,
we may now state the modulus and data processing inequalities for conditional prefix
Kolmogorov complexity lifted to Euclidean space.

Recall that we write any (in)equalities for Kolmogorov complexity for the rest of the
section up to the sub-linear factors in the precision-levels given by (2.1). In contrast, the
corresponding (in)equalities for effective dimension are exact.

Lemma 2.2.2 (Forward Modulus and Data Processing Inequalities for Conditional
Complexity). Let m,n, k ∈ ω, x ∈ Rm, y ∈ Rn, and r, s ∈ ω.

(i) If f : Rm → Rk is computable and uniformly continuous with computable modulus
µ, then

Kr|s(f(x) | y) ≤ Kµ(r+1)|s(x | y).

In particular, if f is also Lipschitz continuous,

dim(f(x) | y) ≤ dim(x | y).

(ii) If f : Rn → Rk is computable and uniformly continuous with computable modulus
µ, then

Kr|µ(s+1) (x | y) ≤ Kr|s (x | f(y)) .

In particular, if f is also Lipschitz continuous,

dim(x | y) ≤ dim(x | f(y)).

Proof. We start by proving (i). Let p∗
f(x) ∈ B2−r(f(x)), p∗

x ∈ B2−µ(r+1)(x) and q∗ ∈ B2−s(y)
be K-minimizers in their respective open balls. Since f is computable, there is an oracle
prefix-free Turing machine M which approximates f arbitrarily well at p∗

x when given p∗
x

as an oracle; say, such that for any r ∈ ω we have
∣∣∣Mp∗

x(r) − f(p∗
x)
∣∣∣ ≤ 2−(r+1). Since µ is
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a modulus for f , M also approximates f arbitrarily well at x when given p∗
x as an oracle,

since for any r,
∣∣∣Mp∗

x(r) − f(x)
∣∣∣ ≤

∣∣∣Mp∗
x(r) − f(p∗

x)
∣∣∣+ |f(p∗

x) − f(x)| ≤ 2−(r+1) + 2−(r+1) = 2−r.

We use Mp∗
x(r) ∈ B2−r(f(x)) to conclude:

Kr|s (f(x) | y) = K
(
p∗

f(x) | q∗
)

[Proposition 2.1.9]

≤ K
(
p∗

f(x) | Mp∗
x(r)

)
+K

(
Mp∗

x(r) | q∗
)

≤ K
(
Mp∗

x(r) | q∗
)

[Corollary 2.1.8]

≤ K (p∗
x | q∗) [Theorem 1.6.2]

= Kµ(r+1)|s (x | y) . [Proposition 2.1.9]

So, if f is indeed Lipschitz continuous, then there is a computable modulus for f of the
form µ(r) = r +O(1), giving

dim(f(x) | y) = lim inf
r→∞

Kr|r(f(x) | y)
r

≤ lim inf
r→∞

Kµ(r+1)|r(x | y)
r

= lim inf
r→∞

Kr+O(1)|r(x | y)
r

= lim inf
r→∞

Kr|r(x | y)
r

[Lemma 1.7.3(i)]

= dim(x | y).

The proof of (ii) is similar. This time, let p∗ ∈ B2−r(x), q∗
y ∈ B2−µ(s+1)(y), and

q∗
f(y) ∈ B2−s(f(y)) be K-minimizers in their respective open balls. Since f is computable,

there is an oracle prefix-free Turing machine M which approximates f arbitrarily well at
q∗

y when given q∗
y as an oracle:

∣∣∣M q∗
y (s) − f(q∗

y)
∣∣∣ ≤ 2−(s+1). Since µ is a modulus for f ,

we get that M also approximates f arbitrarily well at y when given q∗
x as an oracle:

∣∣∣M q∗
y (s) − f(y)

∣∣∣ ≤
∣∣∣M q∗

y (s) − f(q∗
s)
∣∣∣+ |f(q∗

s) − f(y)| ≤ 2−(s+1) + 2−(s+1) = 2−s.

We use M q∗
y (s) ∈ B2−s(f(y)) to conclude:

Kr|µ(s+1) (x | y) = K
(
p∗ | q∗

y

)
[Proposition 2.1.9]
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= K
(
p∗ | M q∗

y (s)
)

+K
(
M q∗

y (s) | q∗
y

)
≤ K

(
p∗ | M q∗

y (s)
)

+K
(
q∗

y | q∗
y

)
[Theorem 1.6.2]

≤ K
(
p∗ | q∗

f(y)

)
+K

(
q∗

f(y) | M q∗
y (s)

)
= K

(
p∗ | q∗

f(y)

)
[Corollary 2.1.8]

= Kr|s (x | f(y)) . [Proposition 2.1.9]

So, if f is indeed Lipschitz continuous, then there is a computable modulus for f of the
form µ(r) = r +O(1), giving

dim(x | y) = lim inf
r→∞

Kr|r(x | y)
r

= lim inf
r→∞

Kr|r+O(1)(x | y)
r

[Lemma 1.7.3(ii)]

= lim inf
r→∞

Kr|µ(r+1)(x | y)
r

≤ lim inf
r→∞

Kr|r(x | f(y))
r

= dim(x | f(y)).

Analogous results hold for when the inverse of a function is computable and uniformly
continuous.

Lemma 2.2.3 (Reverse Modulus and Data Processing Inequalities for Conditional
Complexity). Let m,n, k ∈ ω, x ∈ Rm, y ∈ Rn, and r, s ∈ ω.

(i) If f : Rm → Rk is a co-computable, co-uniformly continuous map with computable
inverse-modulus µ, then

Kr|s(x | y) ≤ Kµ(r+1)|s(f(x) | y).

In particular, if f is also co-Lipschitz continuous,

dim(x | y) ≤ dim(f(x) | y).

(ii) If f : Rn → Rk is is a co-computable, co-uniformly continuous map with computable
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inverse-modulus µ, then

Kr|µ(s+1) (x | f(y)) ≤ Kr|s (x | y) .

In particular, if f is also co-Lipschitz continuous,

dim(x | f(y)) ≤ dim(x | y).

Proof. Both parts follow by applying the corresponding result in the previous lemma.

(i) Denote z = f(x) ∈ Rk. Apply Lemma 2.2.2(i) to f−1 and (f−1(z), y).

(ii) Denote z = f(y) ∈ Rk. Apply Lemma 2.2.2(ii) to f−1 and (x, f−1(z)).

Theorem 2.2.4. Let m,n ∈ ω, x ∈ Rm, and y ∈ Rn.

(i) If f : Rm → Rm is a bi-computable, bi-Lipschitz continuous map, then

Kr|s(f(x) | y) = Kr|s(x | y); so, dim(f(x) | y) = dim(x | y).

(ii) If f : Rn → Rn a bi-computable, bi-Lipschitz continuous map, then

Kr|s(x | f(y)) = Kr|s(x | y); so, dim(x | f(y)) = dim(x | y).

Proof. We combine Lemmas 2.2.2 and 2.2.3,

(i) That f is both Lipschitz continuous and co-Lipschitz continuous implies:

Kr|s(f(x) | y) ≤ Kr+O(1)|s(x | y) [Lemma 2.2.2(i)]

≤ Kr|s(x | y) [Lemma 1.7.3(i)]

≤ Kr+O(1)|s(f(x) | y) [Lemma 2.2.3(i)]

≤ Kr|s(f(x) | y) [Lemma 1.7.3(i)].

(ii) That f is both Lipschitz continuous and co-Lipschitz continuous implies:

Kr|s(x | f(y)) ≤ Kr|s+O(1)(x | f(y)) [Lemma 1.7.3(ii)]

≤ Kr|s(x | y) [Lemma 2.2.3(ii)]
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≤ Kr|s+O(1)(x | y) [Lemma 1.7.3(ii)]

≤ Kr|s(x | f(y)) [Lemma 2.2.2(ii)].

By the properties of Hausdorff dimension, fractal geometry is considered to be
the study of fractal properties invariant under the group of bi-Lipschitz continuous
transformations [23]. Given the previous result, we may say something similar for
effectivized fractal geometry: we study fractal properties which are invariant under the
group of bi-computable, bi-Lipschitz continuous transformations [52].
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Chapter 3 |
Continuous, Absolutely Lipschitz
Families

3.1 Background
It is an interesting and difficult problem to describe how effective Hausdorff dimension
behaves as a function over Euclidean space. One approach towards a partial characteriza-
tion involves tracking the effective dimension along function graphs. For instance, given a
function f : R → R, we ask how dim(x, f(x)) might relate to dim(x) and f? If f is both
computable and Lipschitz continuous, Lemma 2.2.2(i) implies dim(x, f(x)) = dim(x).
But when f is not computable nor Lipschitz continuous, showing a relation is more
difficult. It may be that f is parameterized by some real tuple α and computable as a
map given α as an oracle. What sort of uniform continuity properties should f possess
in order to relate dim(x, f(x)) back to the dimensions of x and the parameters in α?

The following theorem was originally proved in 2017 by N. Lutz and D. Stull [40].
It states that the effective dimension of a point on a line in the Euclidean plane may
be bounded from below by a sum of terms depending on the effective dimensions of the
input, slope, and intercept.

Theorem 3.1.1 (Theorem 1 in [40]). For every a, b, x ∈ R and B ∈ 2≤ω,

dimB(x, ax+ b) ≥ dimB(x|a, b) + min
{
dimB(a, b), dimB,a,b(x)

}
. (3.1)

In particular, for almost every x ∈ R, dim(x, ax+ b) = 1 + min {dim(a, b), 1}.

This is the prototypical example for relating dim(x, f(x)) to the dimensions of x and
the parameterization of f . Lutz and Stull employed prefix Kolmogorov complexity to
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prove this result. And as a consequence, they achieved a better lower bound on the
classical Hausdorff dimension of generalized sets of Furstenberg type than were known
at the time (see Theorem 4.3 of [40]). The bound follows from an application of the
Point-to-Set Principle 1.12.1.

The original proof method for Theorem 3.1.1 might be described as following a
sequence of three lemmas:

• Inverse Lemma: Lower-bounding the complexity of a point found in the intersec-
tion of many sufficiently complex tubes.

• Enumeration Lemma: Lower-bounding the complexity of tubes passing through
a fixed point.

• Oracle Construction: Building an oracle with knowledge about a fixed tube
passing through a fixed point, and not much more.

A simplified proof of Theorem 3.1.1 might first attempt to “frontload” the Kolmogorov
complexity methods to achieve a finitary theorem on finite binary strings. Then, one could
pass to the limit-inferior and obtain an infinitary theorem about effective dimensions.
This sort of separation of effective methods from the approximation step is made possible
by the results covered in Section 2.1. Initially, A. Case and J. Lutz proved prefix
complexity could be approximated by K-minimizers: see Lemma 4.9 of [6]. We confirmed
this for conditional complexity as well in Lemma 2.1.9. Together, N. Lutz and D. Stull
showed that conditional complexity is also approximated by dyadic truncations: see
Lemma A.1 (1.7.4) and Lemma A.3 (1.7.5) of [40].

A finitary result is not totally straightforward. The following example by Alexan-
der Shen makes this apparent. Let us call two finitary objects u and v to be independently
random if:

K(u, v) = K(u) +K(v) = len(u) + len(v),

where each equality holds up to logarithmic terms in the lengths of u and v.

Example 3.1.2. Fix r ∈ ω and the r-dyadic reals a, b, x ∈ Dr as follows. Take,

a = 0. 0 · · · 0︸ ︷︷ ︸
r
2 -many

ārand, and b = 0. 0 · · · 0︸ ︷︷ ︸
r
2 -many

b̄rand,
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where the binary strings ārand, b̄rand ∈ 2⌊r/2⌋ are independently random. And select x to
be independently random with respect to the pair ⟨a, b⟩.

It remains to see whether a, b, and x satisfy a finitary version of (3.1). Denote by
y = (ax+ b) ↾ r. We ask whether

K(x, y)
?
≥ K(x | a, b) + min {K(a, b), K(x | a, b)} . (3.2)

Note that K(y) ≤ r
2 holds up to logarithmic terms in r, for the first approximately

r
2 -bits in the binary expansion of y will be zero. Again dropping any logarithmic terms
in r, we may calculate:

K(x, y) ≤ K(x) +K(y) ≤ r + r

2 = 3r
2

< 2r = r + r = K(x | a, b) + min {K(a, b), K(x | a, b)} .

So, (3.2) fails for such a choice of a, b, and x for large enough r.

This example illustrates the main issue in obtaining a finitary theorem from which
to derive Theorem 3.1.1: the line’s parameters (or input) may not consistently achieve
high complexity across their truncations, possibly producing too simple of an output.
Theorem 3.3.3 below only applies to finitary parameters and inputs whose truncations
grow at least as fast as some consistent rate.

We further consider the continuity and algorithmic properties of the family of planar
lines which make Theorem 3.1.1 possible. Any planar line f may be represented in
slope-intercept form: f(x) = ax + b, meaning the finite tuple (a, b) ∈ R2 serves as
a parameterization of f under slope-intercept form. Let (u, v) be the slope-intercept
representation of another planar line g. The first geometric property is referred to as the
Intersecting Tubes Lemma, which approximately states that whenever f(x) = g(x) yet
a ̸= u, one may approximate x by the quantity b−v

u−a
up to a precision that improves as a

and u become more orthogonal as slopes. This could be seen as a consequence of linear
functions being co-Lipschitz continuous. Second, when represented in slope-intercept
form, the function f is nothing more than the composition of a single multiplication
followed by a single addition on some input: f(x) = ax + b. Lines thereby have the
following property: one may use rational approximations to a, b, and x to compute a
similarly precise approximation to the output, f(x). This property is a bit weaker than
Lipschitz continuity for f , since the precision to which we can approximate f(x) will also
depend (linearly) on the sizes of |a| and |x|. We investigate whether any function family
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which is sufficiently Lipschitz and co-Lipschitz continuous as above should also admit a
lower bound result of the same form as in Theorem 3.1.1.

3.2 Computable Absolutely Lipschitz Families

3.2.1 Definition of a CALF

We are interested in capturing the computability and algebraic properties of families of
curves or surfaces like the planar lines. So we will only consider maps of the form Φ :
Rm×Rℓ → Rn, where the first m components of the arguments encode a parameterization
of some function in the family, and the following ℓ components serve as input. Given any
such Φ and open subsets Ω ⊆ Rm and Ξ ⊆ Rℓ (which we call our domains), we might
define the family of all parameterized, real-valued functions under Φ on domain Ω × Ξ:

FΦ(Ω × Ξ) = {Φα : α ∈ Ω} ,

where Φα : Ξ → Rn denotes the map x 7→ Φ(α, x). And since we are also interested in
statements about finitary inputs, we further denote for any r ∈ ω,

Ωr := Ω ↾ r = {α ↾ r : α ∈ Ω} ⊆ Dm
r ,

and let Ω<ω be the union of all Ωr ⊆ Dm. Analogous notation will apply for Ξ.
Since the domain Ω is assumed to be open, we have for any α ∈ Ω that there exists

r ≫ 1 for which α ↾ r ∈ Ωr ∩ Ω. An analogous statement holds for Ξ. This will be useful
for reducing our infinitary theorem to the finitary case.

Locally, certain parameter components may or may not (linearly) depend on the input
x. Let us fix a way to distinguish between these two behaviors. Fix any two parameters
α,β ∈ Ω ⊆ Rm. A component 0 ≤ i < m will be considered roughly constant for Φ at α
and β if, for each α′,β′ which differ from α,β only at component i, and for all x ∈ Ξ,

∣∣∣∣∣∣(Φα′(x) − Φβ′(x)) − (Φα(x) − Φβ(x))
∣∣∣∣∣∣ ≤ O (||α′ −α|| + ||β′ − β||)

independently of x. Otherwise, the component i will be considered co-Lipschitz for Φ.
We collect into the tuple (α − β)cL all differences αi − βi where i is a co-Lipschitz
component for Φ at α and β.
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Definition 3.2.1. A computable absolutely Lipschitz family (CALF) on a domain Ω×Ξ ⊆
Rm × Rℓ is a partial-computable map Φ : Ω × Ξ → Rn such that

(i) Φ is scaling Lipschitz continuous. That is, for all α,β ∈ Ω and x1, x2 ∈ Ξ,
∣∣∣∣∣∣Φα(x1) − Φβ(x2)

∣∣∣∣∣∣ ≤ (O(||x1||) +O(1) + o(1)) · ||α− β||

+ (O(||α||) +O(1)) · ||x1 − x2|| ,

where the o(1) term vanishes as ||x1 − x2|| → 0.

(ii) Φ has scaling co-Lipschitz continuous differences. That is, for all α,β ∈ Ω<ω, it
holds that Φα − Φβ is either constant or scaling co-Lipschitz continuous, meaning
for all x1, x2 ∈ Ξ,

||(α− β)cL|| · ||x1 − x2|| = O||x1||,||x2||
(∣∣∣∣∣∣(Φα(x1) − Φβ(x1)) − (Φα(x2) − Φβ(x2))

∣∣∣∣∣∣) ,
where the constant may depend on ||x1|| and ||x2||; and there is an algorithm
deciding this from α and β.

(iii) Φ has dense intersections. That is, for all r ∈ ω, α ∈ Ωr, and x ∈ Ξ, there is an
algorithm using x ↾ r and Φα(x) ↾ r (as well as r, m, n, ℓ, and α ↾ O(1)) to compute
a (2−r · O||α||,||x||,m,n(1))-approximation to some β ∈ B2−r·O||α||,||x||,m,n(1)(α) ∩ Ωr

satisfying Φα − Φβ is scaling co-Lipschitz continuous with − log2 ||(α− β)cL|| ≤
r −O||α||,||x||,m,n(1).

Definition 3.2.2. Let Φ be a CALF on Ω × Ξ. We fix a measure of similarity between
two parameters α,β ∈ Ω as follows:

S(α,β) = − log ||(α− β)cL|| .

In particular, if α ↾ r = β ↾ r, then S(α,β) ≥ r −O(1).

3.2.2 Standard Example of a CALF

Example 3.2.3 (Points on Planar Lines). Take Φ to be the computable map on
R2 × R → R given by

Φ(a, b, x) = ax+ b.
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We show that Φ is a CALF on its domain. The real-function family FΦ associated to
this map consists of all the non-vertical, planar lines as expressed in slope-intercept form
with parameters a and b and input x. Let us fix two sets of slope-intercept parameters
(a, b), (u, v) ∈ R2 and two inputs x1, x2 ∈ R.

It is easy to see that Φ is scaling Lipschitz continuous: we may check using the
triangle inequality that:

∣∣∣Φ(a,b)(x1) − Φ(u,v)(x2)
∣∣∣ ≤ ||(a, b) − (u, v)|| · (|x1| + 1 + |x1 − x2|) + |a| · |x1 − x2| .

Moreover, Φ(a,b) − Φ(u,v) is constant if and only if a = u. In addition, the slope
parameter is a co-Lipschitz parameter, while the intercept parameter is roughly constant
in the sense defined above. Indeed, given different choices a′, b′, u′, v′ ∈ R and any x ∈ R,
∣∣∣(Φ(a′,b)(x) − Φ(u′,v)(x)) − (Φ(a,b)(x) − Φ(u,v)(x))

∣∣∣ = |(a′ − a) − (u′ − u)| |x| ,∣∣∣(Φ(a,b′)(x) − Φ(u,v′)(x)) − (Φ(a,b)(x) − Φ(u,v)(x))
∣∣∣ ≤ |(b′ − b) − (v′ − v)| ≤ |b′ − b| + |v′ − v| .

Thus, in this example, ||((a, b) − (u, v))cL|| = |a− u|. It is also straightforward to check
that:

∣∣∣(Φ(a,b)(x1) − Φ(u,v)(x1)) − (Φ(a,b)(x2) − Φ(u,v)(x2))
∣∣∣ = |a− u| · |x1 − x2| .

So we also conclude that Φ has scaling co-Lipschitz continuous differences.
We finally argue that Φ has dense intersections. Fix r ∈ ω, (a, b) ∈ D2

r, and x ∈ R.
We appeal to the the machine construction and geometric observations used in proving
Lemma 6(i) of [40]. Their argument can be seen as constructing a Turing machine which
receives a description for (x ↾ r, (ax+ b) ↾ r), along with descriptions for r and (a, b) ↾ 1,
to produce parameters (u0, v0) ∈ B2−r(a, b) satisfying:

|u0 · (x ↾ r) + v0 − (ax+ b) ↾ r| < 2−r · (|u0| + |x ↾ r| + 3).

By their Observation A.4(ii), there exists (u, v) ∈ B2γ−r(u0, v0) ∩ D2
r such that u ̸= a,

where γ = log(2 |a| + |x| + 5). These parameters (u, v) will necessarily agree in output
with (a, b) at input x up to precision 2−r ·O(|a| + |x| + 1).
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3.3 Finitary Theorem
The following geometric observation is known as the Intersecting Tubes Lemma in the case
of planar lines: that the closer to perpendicular two intersecting lines are to one another,
the more precisely one may describe their point of intersection. For us, that generalizes
to a statement of the form: the more similar the co-Lipschitz parameters of two Φ-curves
are, the more precisely one may describe an input on which they approximately intersect.

Observation 3.3.1 (C.f. Observation A.5 in [40]). Take Φ : Rm × Rℓ → Rn to be
a CALF on domain Ω × Ξ. Fix r ∈ ω, x ∈ Ξr, and α,β ∈ Ωr with Φα − Φβ being
scaling co-Lipschitz continuous. If

∣∣∣∣∣∣Φα(x) − Φβ(x)
∣∣∣∣∣∣ ≤ 2−r+On(1), k = S(α,β), and

r ≥ k +O||x||,n(1), then there is an algorithm approximating x to precision 2−r+k+Ox,n(1)

uniformly in α, β, and r.

Proof. Whenever another x′ ∈ Ξ satisfies
∣∣∣∣∣∣Φα(x′) − Φβ(x′)

∣∣∣∣∣∣ < 2−r+On(1), then since Φ
has co-Lipschitz continuous differences,

||(α− β)cL|| · ||x− x′|| ≤ O||x||,||x′||(1) ·
∣∣∣∣∣∣(Φα − Φβ)(x) − (Φα − Φβ)(x′)

∣∣∣∣∣∣
≤ 2 ·O||x||,||x′||(1) · 2−r+On(1). (3.3)

So, ||x− x′|| ≤ 2−r+k+O||x||,||x′||,n(1). This informs our search: splitting Rℓ into cubes
with side-length 2−r, we iterate through all dyadic rational q ∈ Dℓ

r and ask whether∣∣∣∣∣∣Φα(q) − Φβ(q)
∣∣∣∣∣∣ < 2−r+O||q||,n(1). In light of (3.3), the search must terminate on a test

point q ∈ B
2−r+k+O||x||,n(1)(x).

As a corollary to Observation 3.3.1, we have the following fact for any two curves
with parameters α and β which approximately agree on some input x. Essentially, β
can simultaneously describe the portion of the co-Lipschitz components of α shared with
β along with a complementary portion of the bits of x.

Corollary 3.3.2 (C.f. Lemma 7 in [40]). Take Φ : Rm × Rℓ → Rn to be a CALF
on domain Ω × Ξ. Fix r ∈ ω, x ∈ Ξr, and α,β ∈ Ωr with Φα − Φβ being scaling
co-Lipschitz continuous. If

∣∣∣∣∣∣Φα(x) − Φβ(x)
∣∣∣∣∣∣ ≤ 2−r+On(1) and k = S(α,β), then for each

r ≥ k +O||x||,n(1),

K(β) ≥ K(α ↾ k) +K(x ↾ (r − k) | α) −O||α||,||x||,n(log r).

60



Proof. Suppose r ≥ k + O||x||,n(1) from Observation 3.3.1. We perform symmetry of
information 1.6.1 several times to confirm:

K(β) ≥ K(β | α) + [K(α) −K(α | β)] −O(log r)

≥ K(x ↾ (r − k) | α) + [K(α) −K(α | β ↾ k)] −O(log r) [Observation 3.3.1]

≥ K(x ↾ (r − k) | α) + [K(α) −K(α | α ↾ k)] −O(log r)

= K(x ↾ (r − k) | α) +K(α ↾ k) −O(log r).

Theorem 3.3.3 (Finitary Lower Bound). Take Φ : Rm × Rℓ → Rn to be a CALF on
domain Ω × Ξ. Let d < δ ∈ [0, ℓ], r ∈ ω. Suppose α ∈ Ωr and x ∈ Ξr satisfy for each
k ≤ r,

(i) K(α ↾ k) ≥ dk − o(k),

(ii) K(x ↾ k | α) ≥ δk − o(k).

Then,

K(x,Φα(x)) ≥ K(α, x) −m · K(α) − dr

δ − d
− o(r).

Proof. Let m, n, ℓ, d, δ, r, α, and x be as in the statement. Further denote by
y := Φα(x) ↾ r ∈ Dn

r the level-r approximation to the output of Φα at x. Since Φ has
density of intersections, we may fix β ∈ Ωr such that Φα − Φβ is scaling co-Lipschitz
continuous, ||α− β|| ≤ 2−r+O||α||,||x||,m,n(1), and S(α,β) ≤ r−O||α||,||x||,m,n(1). And since
Φ is scaling Lipschitz continuous, this implies that the outputs Φα(x) and Φβ(x) agree
to a similar precision:

∣∣∣∣∣∣Φα(x) − Φβ(x)
∣∣∣∣∣∣ ≤ O(||α|| + |x| + 1) · ||α− β|| ≤ 2−r+γ,

where γ = 2O||α||,||x||,m,n(1).
Furthermore, by the density of intersections assumption, we see:

K((β, x) ↾ (r − γ)) ≤ K(x, y) +K1(α) +K(r) +K(m,n, ℓ) +O(1). (3.4)

Let k = S(α,β) and recall r ≥ k + O||α||,||x||,m,n(1). Since α can approximately
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compute β, we deduce the following numerical condition:

K(α) ≥ K(β ↾ (r − γ)) − o(r) [β ∈ B2γ−r(α)]

≥ K(β) − o(r) [γ = O||α||,||x||,m,n(1)]

≥ K(α ↾ k) +K(x ↾ (r − k) | α) − o(r) [Corollary 3.3.2]

≥ dk + δ(r − k) − o(r) [Assumptions (i) & (ii)]

= dr + (δ − d)(r − k) − o(r),

We rearrange to see:

r − k ≤ K(α) − dr

δ − d
+ o(r), (3.5)

which is well-defined as δ > d. Notice by assumption that B2−r(β) ⊆ B2−k+o(r)(α). We
use this fact and the Chain Rule 1.6.1 to conclude:

K(x, y) ≥ K(β, x) − o(r) [(3.4)]

≥ K(α ↾ k, x) − o(r)

= K(α ↾ k | x) +K(x) − o(r)

≥ K(α | x) −m · (r − k) +K(x) − o(r)

≥ K(α, x) −m · K(α) − dr

δ − d
− o(r). [(3.5)]

3.4 Infinitary Theorem
We leverage the finitary theorem 3.3.3 to prove the corresponding result about the
effective dimension of points on the graph of a map in the family given by a CALF. The
last component we require to do this is the oracle construction developed by N. Lutz and
D. Stull in [40].

Lemma 3.4.1 (Lemma 8 of [40]). Fix m, r ∈ ω, x ∈ Rm, and rational 0 ≤ η ≤ dim(x).
Then there exists an oracle X = X(x,m, r, η) satisfying:

(i) For each k ≤ r,

KX
k (x) = min {ηr,Kk(x)} ±O(log r).
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(ii) For any n, s ∈ ω and y ∈ Rn,

KX
s|r(y | x) = Ks|r(y | x) ±O(log r),

Kx,X
s (y) = Kx

s (y) ±O(log r).

Part (i) of the construction claims X can simplify the first r many dyadic truncations
of x to not exceed the limiting information density of x, whereas part (ii) ensures that
X cannot meaningfully aid x in making computations.

Theorem 3.4.2 (Infinitary Lower Bound). Let Φ : Rm ×Rℓ → Rn be a CALF on domain
Ω × Ξ. Then for every α ∈ Ω, x ∈ Ξ, and B ∈ 2≤ω,

dimB(x,Φα(x)) ≥ dimB(x|α) + min
{
dimB(α), dimB,α(x)

}
.

Proof. The following argument may be relativized to an arbitrary oracle B ∈ 2≤ω. Fix
α ∈ Ω and x ∈ Ξ. The claim of the theorem is trivial when dim(x | α) = 0 (in which
case, by Lemma 1.7.7, dimα(x) = 0 as well). So consider the case of δ := dimα(x) > 0,
and let

d ∈ Q ∩ [0, dim(α)] ∩ [0, dimα(x)).

Clearly, δ > d. Fix r ≫ 1 sufficiently large so that α ↾ r ∈ Ω and x ↾ r ∈ Ξ. Let
Xr := X(α,m, r, d) be an oracle for α at information density d as guaranteed by
Lemma 3.4.1. We now check that we may apply Theorem 3.3.3 to α ↾ r and x ↾ r at
precision-level r. Let 0 ≤ k ≤ r. We skip writing (α ↾ r) ↾ k = α ↾ k and similar for x.

Then, the assumption (i) of Theorem 3.3.3 follows from Lemma 1.7.4:

K(α ↾ k) = Kk(α) ± o(k) ≥ dim(α)k − o(k) ≥ dk − o(k).

And the assumption (ii) similarly follows from Lemma 1.7.4 relativized to α:

Kα(x ↾ k) = Kα
k (x) ± o(k) ≥ dimα(x)k − o(k) = δk − o(k).

Therefore, we may apply Theorem 3.3.3 to α ↾ r and x ↾ r. Note that if αr = α ↾ r

and xr = x ↾ r, then K(Φα(x) ↾ r) = K(Φαr(xr) ↾ r) ± o(r). This follows from Φ being
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scaling Lipschitz continuous. So,

dim(x,Φα(x)) ≥ dimXr(x,Φα(x))

= lim inf
r→∞

1
r
KXr

r (x,Φα(x))

= lim inf
r→∞

1
r
KXr((x,Φα(x)) ↾ r) [Lemma 1.7.4 rel. to Xr]

= lim inf
r→∞

1
r
KXr(xr,Φαr(xr) ↾ r) [Φ is scaling Lipschitz]

≥ lim inf
r→∞

1
r

[
KXr(αr, xr) −m · K

Xr(αr) − dr

δ − d

]
[Theorem 3.3.3 rel to Xr]

= lim inf
r→∞

1
r

[
KXr

r (α, x) −m · K
Xr
r (α) − dr

δ − d

]
[Lemma 1.7.4 rel to Xr]

≥ lim inf
r→∞

1
r
KXr

r (α, x) [Lemma 3.4.1(i)]

≥ lim inf
r→∞

1
r

[
KXr

r|r (x | α) +KXr
r (α)

]
[Theorem 1.7.6]

= lim inf
r→∞

1
r

[
Kr|r(x | α) + dr

]
[Lemma 3.4.1(i),(ii)]

= dim(x|α) + d.

As d was an arbitrary rational number in [0, dim(α)] ∩ [0, dimα(x)), we conclude:

dim(x,Φα(x)) ≥ dim(x | α) + min {dim(α), dimα(x)} .

Theorem 3.1.1 follows as a consequence of Theorem 3.4.2 as applied to the CALF Φ
from Example 3.2.3.

3.5 Dimension Spectrum of CALF Maps
According to Theorem 3.1.1, if Φα is a map from a CALF, then points (x,Φα(x)) on
its graph are at least somewhat complex. Our goal in this section is to understand
the effective dimension of these points as a distribution: e.g., can the lower bound in
Theorem 3.1.1 be exact for most points along Φα? The following results are direct
generalizations of those from Section 4 of [65]. For the remainder of the section, we fix a
CALF Φ : Rm × Rℓ → Rn on a domain Ω × Ξ.

64



The first result is an observation that directly follows from the approximate chain
rule 1.7.6 and the density of intersections of Φ.

Observation 3.5.1. For each α ∈ Ω and x1, x2 ∈ Ξ,

Kr(α) +Kr(x1 | α) +Kr(x2 | α, x1) −O(log r)

≤ Kr(α, x1, x2)

≤ Kr(x1,Φα(x1)) +Kr(x2,Φα(x2)) +O||x1||,||x2||(1) + 2 log ||x1 − x2|| .

The final upper bound in Observation 3.5.1 involves two separate complexity terms
which are not guaranteed to achieve their limiting lower densities at the same precision-
levels, preventing us from immediately concluding a result relating the effective dimen-
sion of these objects. Yet, we may characterize the size of the set of instances when
Kr(x1,Φα(x1)) and Kr(x2,Φα(x2)) are simultaneously minimal.

Lemma 3.5.2. Let δ ∈ (0, ℓ), α ∈ Ω, x1 ∈ Ξ, and n, r ∈ ω be such that 2√
r
< 1

n
. Assume

that

δ · r ≤ Kα
r (x1,Φα(x1)), and Kr(x1,Φα(x1)) ≤ δ · r + Kr(α)

2 − r

n
.

Then, for any other x2 ∈ Ξ satisfying Kr(x2,Φα(x2)) < δ · r + Kr(α)
2 , it holds that either

− log ||x1 − x2|| ≤
√
r +O||x1||,||x2||(1) +O(log r), or Kr(x2 | α, x1) < δ · r.

In words, the following holds for all sufficiently large precision-levels. We suppose x1

is sufficiently complex with respect to α, while the pair (x1,Φα(x1)) is not much more
complex. Then, for any other input x2 with a simple (x2,Φα(x2)), either x2 is sufficiently
far from x1, or x2 is simple to describe from α and x1.

Proof. Suppose the hypothesis holds but that neither condition is satisfied for some
x2 ∈ Ξ. Then by Observation 3.5.1,

Kr(α) + 2δr −O(log r)

≤ Kr(α) +Kr(x1 | α) +Kr(x2 | α, x1) −O(log r)

≤ Kr(x1,Φα(x1)) +Kr(x2,Φα(x2)) +O||x1||,||x2||(1) + 2 log ||x1 − x2||

<

[
δr + Kr(α)

2 − r

n

]
+
[
δr + Kr(α)

2

]
+O||x1||,||x2||(1) + 2 log ||x1 − x2|| .
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Since the first condition on x2 fails, we deduce 1
n
< 2√

r
, a contradiction.

Given δ ∈ (0, ℓ), denote by

Dα(δ) :=
{
x ∈ Ξ : dim(x,Φα(x)) < δ + dim(α)

2

}

the set of inputs which map to the point (x,Φα(x)) having effective dimension less than
δ + dim(α)/2. Now, we may state the main result for the dimension spectrum of Φα.

Theorem 3.5.3. For every α ∈ Ω and δ ∈ (0, ℓ), we have dimH(Dα(δ)) ≤ δ.

That is, very few points along the graph of Φα may be of small effective dimension,
and almost every input x produces a point (x,Φα(x)) of effective dimension at least ℓ.

Proof. Fix α ∈ Ω and δ ∈ (0, ℓ). Really, we work with the sets:

Dα
n (δ) :=

{
x ∈ Ξ : (∃∞r ∈ ω)

[
Kr(x,Φα(x)) < δ · r + Kr(α)

2 − r

n

]}
,

which cover Dα(δ), since if x ∈ Dα(δ) and ε > 0, there will exist infinitely many r ∈ ω

for which

Kr(x,Φα(x)) < δ · r + dim(α)
2 · r − ε · r < δ · r + Kr(α) + o(r)

2 − ε · r,

meaning for sufficiently large values of n ∈ ω, we have x ∈ Dα
n (δ). Therefore, by the

countable stability of Hausdorff dimension, it suffices to show that dimH(Dα
n (δ)) ≤ δ for

all n ∈ ω.
To begin, for each r ∈ ω, fix a point xr ∈ Ξ, if it exists, satisfying the hypotheses of

Lemma 3.5.2, i.e.,

δ · r ≤ Kα
r (xr,Φα(xr)), and Kr(xr,Φα(xr)) ≤ δ · r + Kr(α)

2 − r

n
.

And let B ∈ 2≤ω be an oracle encoding all the (xr)r∈ω which exist. We now consider
three cases for a fixed x ∈ Dα

n (δ).
Suppose first that Kα

r (x) ≤ δ ·r for infinitely many r ∈ ω. Then, clearly, dimα(x) ≤ δ.
Otherwise, if ||x− xr|| < 2−

√
r+O(log r)+O(1) for infinitely many r ∈ ω, then for each

such r,

KB√
r(x′) ≤ O(log r) +O(1) = O(log

√
r),
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implying dimB(x) = 0.
Finally, if neither condition holds, take any one of the infinitely many r ∈ ω for which

Kr(x,Φα(x)) < δr + Kr(α)
2 − r

n
.

Then, by Lemma 3.5.2, it must be that Kr(x | α, xr) < δ · r, meaning dimB,α(x) ≤ δ. In
any case, the Point-to-Set Principle 1.12.1 implies dimH(Dα

n (δ)) ≤ δ, as desired.
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Chapter 4 |
Algorithmic Information Theory
on Net Spaces

4.1 Background
As we have noted, algorithmic information theory has succeeded at characterizing certain
fractal dimensions and outer measures on simple spaces in effective terms (e.g., the
point-to-set principles 1.12.1 and 1.12.3). These simple spaces include Euclidean space as
well as spaces of infinite sequences over finite alphabets. Yet, classical fractal dimensions
such as Hausdorff dimension and packing dimension are well-defined over arbitrary metric
spaces. So, it is natural to investigate over which settings AIT may successfully be
applied to GMT.

E. Mayordomo isolated for her nicely covered spaces some conditions under which
a metric space would admit a subset of the effective dimension equalities found in
Theorem 1.9.2 [46]. Even more recently, J. Lutz, N. Lutz, and Mayordomo extended the
Point-to-Set Principle to all separable metric spaces via an incompressibility approach [33].
They leave open the possibility for algorithmic dimension to be alternatively characterized
in general metric spaces via effective mass distribution or betting strategies.

In this chapter, we develop the full algorithmic information theory framework for a
broad class of metric spaces which comprises the two approaches known hitherto.

A standard result in geometric measure theory is one by A. Besicovitch claiming
that within each compact subset of Euclidean space of positive Hs-measure, one may
find a subset whose Hs-measure is in fact both non-zero and finite [3]. Besicovitch’s
proof involved constructing outer measures from premeasures defined on the collection of
dyadic cubes over Euclidean space. Besicovitch further noticed that these outer measures
would assign a comparable measure to arbitrary subsets as the s-dimensional Hausdorff
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outer measures Hs.
D. Larman later generalized these notions to metric spaces covered by nets [27]: a net

on a metric space may be described as a countable cover consisting of sufficiently nicely
nested subsets; and a net measure is an outer measure produced from a given premeasure
defined on a net. Call any metric space admitting a net to be a net space. C. Rogers
and R. Davies succeeded at extending Besicovitch’s result about compact sets to a broad
class of net spaces using the properties of nets and net measures [55]. The essential
properties of the collection of dyadic cubes on Euclidean space also play a similar role
in the study of maximal functions in harmonic analysis. Evidently, net spaces should
constitute fruitful settings over which to consider geometric measure theory.

In the language of nets, Euclidean space was shown to admit a net of dyadic cubes
rich enough to simulate Hausdorff dimension only by covers comprising elements of that
net. Note that in general, not all metric spaces admit nets, and not all metric spaces
which do admit nets have a rich enough family of nets to simulate Hausdorff dimension.

Net spaces are particularly suited to the development of algorithmic information
theory. The computability arguments made on either the nicely covered spaces of [46]
or the separable metric spaces considered in [33] make use of countable collections of
subsets with nice covering and nesting properties. Our approach will take advantage of
the countability and tree-like structure of a net under set-inclusion to extend algorithmic
information theory to net spaces. Whether the effective dimension notions produced in
this extension will correspond to the classical Hausdorff dimension on that space will
depend on the existence of nets with net measures comparable to the family (Hs)s≥0.

From this perspective, the standard Point-to-Set Principle 1.12.1 for Euclidean space
may be viewed as the combination of two results: first, that Hausdorff dimension
restricted to covers by dyadic cubes admits a point-to-set principle using effective covers
also by dyadic cubes; and second, that the dyadic cubes net on Euclidean space admits
comparable measures to each Hs.

4.1.1 Meshes and Nets

Definition 4.1.1. We say that a collection N of non-empty subsets of a metric space Ω
is a mesh on Ω if it satisfies the following properties:

(M1) N is countable;

(M2) Each element of N has at most finitely many supersets also in N ;
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(M3) For any x ∈ Ω and ε > 0, x is contained in an element of N of diameter less than ε.

The pair (Ω,N ) is then called a mesh space.

For any two mesh elements N1, N2 ∈ N , let N1 || N2 denote that N1 and N2 are
comparable (under the containment relation), which means either N1 ⊆ N2 or N2 ⊆ N1.
Otherwise, N1 and N2 are said to be incomparable.

Definition 4.1.2. If N is a mesh on Ω, we call N a net on Ω if it further satisfies:

(N4) No element of N is contained in two incomparable elements from N . That is,
N ⊆ N1 ∩N2 implies N1 || N2 for all N,N1, N2 ∈ N .

The pair (Ω,N ) is then called a net space.

This definition of a net differs from the definition provided by C. Rogers and R. Davies
in [55] in the following ways. First, they ask that each element of a net be Fσ (that is,
Σ0

2) in order to get useful results about the regularity of their net measures, as well as on
how such net measures behave on compact sets with positive measure. For most of our
purposes, we will not need a bound on the descriptive complexity of net elements. Second,
(N4) slightly generalizes the incomparability axiom of Rogers and Davies which asks
that any two non-trivially intersecting net elements be comparable. As we will see, many
results from algorithmic information theory still hold under our weaker incomparability
axiom (N4). We will call any net which satisfies the following stronger axiom to be a
layered-disjoint net:

(N4′) No two incomparable elements of N may meet non-trivially. That is, N1 ∩N2 ̸= ∅
implies N1 || N2 for all N1, N2 ∈ N .

The name is inspired by the layered disjoint systems of [6]. It will be clear that any net
satisfying (N4′) induces a layered disjoint system in that sense. Any layered-disjoint net
on Ω may also be viewed as a Lusin scheme on Ω in the sense of Definition 4.7.9 below.
Whenever a layered-disjoint net comprises only Fσ sets, we will more specifically call it a
Rogers net.

The elements of a mesh and net are arranged in a tree-like structure. To argue this,
let us first note that the containment relation ⊇ is well-founded on a mesh or net. That
is, ⊇ is a partial binary relation on N × N which always admits minimal elements, i.e.,

(∀E ⊆ N ) [E ̸= ∅ =⇒ (∃N ∈ E)(∀N ′ ∈ E)[N ′ ⊇ N =⇒ N ′ = N ]] .
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Since ⊇ is both transitive and antisymmetric, the mesh axiom (M2) gives us that the
containment relation ⊇ is well-founded over any mesh.

In particular, we claim in the following proposition that the containment relation on
a mesh induces a directed, acyclic graph (DAG) on the mesh elements. If G = (V,E) is a
graph, and → is a partial binary relation on V × V satisfying x → y ⇐⇒ (x, y) ∈ E,
then G is a DAG if the transitive closure (i.e., the extended relation which relates two
vertices so long as there is a finite directed path between them) of → is well-founded.

Proposition 4.1.3. To any mesh N on a metric space Ω may be associated a directed,
acyclic graph G whose vertices are the elements of N , and whose directed edge relation
(→) is given by the immediate-predecessor relation:

N1 → N2 ⇐⇒ N2 ⊊ N1 ∧ (∀N ∈ N )[N2 ⊊ N ⊆ N1 =⇒ N = N1].

Proof. By (M2), any set in N must have only finitely many supersets in N . Therefore,
all paths between vertices in G are of finite length. And by (M1), the degree of every
vertex is countable, so G is a directed graph on N . It remains to check that G is acyclic.

Let ⪯N be the partial order on vertices of G induced by path-connectedness (i.e., the
transitive closure of pred): define N1 ⪯N N2 if and only if there is a finite path in G
from N1 to N2 (or, if N1 = N2). Then, N1 ⪯ N2 holds if and only if N2 ⊆ N1. And as
the containment relation is well-founded, it follows that G is directed acyclic.

By standard results on well-founded relations (e.g., Theorem 2.27 of [20]), one may
assign to any mesh element N ∈ N its rank, which is given by the length of the longest
path in G from a root element (i.e., an element having no strict superset in the mesh) of
N to N . This may be defined inductively as follows: the rank of any root element in N
is taken to be zero, and for any other N ∈ N :

rk(N) := 1 + max {rk(N ′) : N ⊊ N ′ ∈ N } .

For any mesh N and natural number r ∈ ω, let N (r) := {N ∈ N : rk(N) = r} denote the
collection of elements in N with rank r ∈ ω. Note that if N ∈ N (r), then any superset
of N in N must be of rank less than r.

It is well-known that on any DAG one may perform topological sort. This formalizes
for meshes as follows.

Proposition 4.1.4. Any mesh N admits a bijective indexing ι : ω → N respecting the
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containment relation. That is, for any i, j ∈ ω, we have

ι(i) ⊆ ι(j) =⇒ i ≥ j.

Proof. It suffices to find a bijection ι :⊆ ω → N respecting containment as in the
statement. We take ⟨·, ·⟩ : ω2 → ω to denote a standard, bi-computable, injective pairing
function monotonically-increasing in both its components.

Begin by enumerating each rank layer N (r) =
{
N

(r)
0 , N

(r)
1 ...,

}
. We define ι inductively

in the rank. For a given mesh element N (0)
e ∈ N (0), define the index of N (0)

e so that:

ι : ⟨0, e⟩ 7→ N (0)
e .

For a fixed r ∈ ω, suppose we have defined ι to surject onto all of N (r), and take
N (r+1)

e ∈ N (r+1). Assign an index to N (r+1)
e as follows:

I(r+1)
e := max

f∈ω

{
ι−1

(
N

(r)
f

)
: N (r+1)

e ⊆ N
(r)
f

}
;

ι :
〈
r + 1,

〈
I(r+1)

e , e
〉〉

7→ N (r+1)
e .

First, notice that by induction, ι indeed surjects onto N since (N (r))r partitions N .
The indexing is injective since ⟨·, ·⟩ is injective. It remains to check that ι respects
containment.

Suppose i, j ∈ ω are such that ι(i) ⊆ ι(j). It holds that either ι(i) = ι(j) (and hence,
i = j), or ι(i) ⊊ ι(j), meaning rk(ι(j)) < rk(ι(i)). Without loss of generality, we may
assume that rk(ι(j)) = rk(ι(i)) − 1 (the general case would then follow by induction).
Suppose i =

〈
r,
〈
I(r)

e , e
〉〉

for some r > 0 and e ∈ ω. Then, by definition, I(r)
e ≥ j, giving

i > j by the properties of ⟨·, ·⟩.

Proposition 4.1.5. The associated graph G to a net N is a forest of countably many
countable trees. That is, the net N is embeddable into ω<ω.

Proof. Take G to be the directed, acyclic graph associated to N in Proposition 4.1.3.
With the net axiom (N4), it follows that each element of N has at most one immediate
predecessor with respect to containment That is, each vertex of G has an in-degree of at
most 1. So G is graph-isomorphic to a countable collection of disjoint trees on ω<ω.

If N is a layered-disjoint net, then the sequence of rank layers (N (r))r∈ω forms a
layered disjoint system in the sense of [6]. Moreover, the infinite paths through the
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associated graph G which begin at indices of root elements (i.e., elements with no
strict-superset in N ) are in a one-to-one correspondence with points in Ω.

Definition 4.1.6. For x ∈ Ω and mesh N on Ω with indexing ι, call any sequence
(in)n∈ω ⊆ ω satisfying

x ∈
⋂
n

ι(in) and diam(in) → 0 as n → ∞

an N -name of x. Collect all N -names of x in the set R(x).

Since incomparable mesh elements may overlap (i.e., have nontrivial intersection),
each R(x) may be a large collection in general. But layered-disjoint nets admit unique
names.

4.1.2 Computability for Meshes and Nets

Fix a mesh space (Ω,N ), as well as an indexing ι : ω → N respecting containment as in
Proposition 4.1.4.

For the purposes of computability, we treat the mesh N as a structure with a
corresponding ω-presentation R to which we will assume to possess oracle access. We
assume that R at least computes ⟨in, pred, diam, root⟩, where

• in : ω2 → {⊤,⊥} is a relation on pairs of indices encoding the containment relation
in the mesh; i.e., if Ni, Nj ∈ N satisfy ι(i) = Ni and ι(j) = Nj, then

in(i, j) ⇐⇒ Ni ⊆ Nj.

• pred : ω2 → {⊤,⊥} is a relation on pairs of indices encoding the predecessor
relation in the mesh; i.e., if Ni, Nj ∈ N satisfy ι(i) = Ni and ι(j) = Nj, then

pred(i, j) ⇐⇒ Nj ⊊ Ni ∧ (∀N ∈ N )[Nj ⊊ N ⊆ Ni =⇒ N = Ni].

• diam : ω → [0,∞] is a map from indices to non-negative extended reals encoding
the diameter function for net elements; i.e., if ι(i) = Ni ∈ N , then

diam(i) = diamd(Ni) = sup {d(x, y) : x, y ∈ Ni} .
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• root : ω → {⊤,⊥} is the characteristic function for the set of indices of the root
elements of the mesh; i.e., if ι(i) = Ni ∈ N , then

root(i) ⇐⇒ (∀N ∈ N )[N ⊇ Ni =⇒ N = Ni].

Note that in net spaces, the predecessor relation is equivalently characterized as:

pred(i, j) ⇐⇒ Nj ⊊ Ni ∧ (∀N ∈ N )[Nj ⊊ N =⇒ Ni ⊆ N ].

Given a mesh space (Ω,N ) and an ω-presentation R of N as described above, call
the tuple (Ω,N ,R) a represented mesh space. If N is in fact a net, we might also call
(Ω,N ,R) a represented net space.

Any computability notion considered over a mesh N must be taken with respect
to some ω-presentation R of N . An effective mesh is a mesh with a computable ω-
presentation R. We may drop the reference to a computable presentation, since having
oracle access to it will not provide any extra computational power. Analogous definitions
describe effective nets of each kind.

Recall the definition of a computable metric space from Section 1.4. We note that
any separable metric space may be viewed as a computable metric space relative to some
oracle which uniformly computes the pairwise distances between elements of the dense
sequence.

Suppose the metric space (Ω, d) has an effective mesh N with a computable ω-
presentation R. And suppose there is a map χ : ω → Ω such that for each i ∈ ω,
we have χ(i) ∈ ι(i) and such that the map i, j 7→ d(χ(i), χ(j)) is computable. Denote
by α = (αi)i∈ω with αi = χ(i) the sequence built from the range of χ. Then, we call
(Ω, d,N ,R, α) a computable mesh space. If N were in fact a net, we might also call
this space a computable net space. And, without the mesh and its presentation, any
computable mesh space is a computable metric space.

Proposition 4.1.7. If (Ω, d,N ,R, α) is a computable mesh space, then (Ω, d, α) is a
computable metric space.

Proof. We already have that the pairwise distances between elements of α are computable
by the definition of a computable mesh space. It remains to show that this sequence is
dense in Ω. Take x ∈ Ω and δ > 0. By the mesh axiom (M3), there exists a mesh element
N ∈ N such that x ∈ N and diamd(N) < δ. By the triangle inequality, N ⊆ Bδ(x). But
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if ι(i) = N for some i ∈ ω, then χ(i) ∈ N implies that χ(i) ∈ Bδ(x) as well. So (χ(i))i is
dense in Ω.

Note that many of the basic examples of mesh or net spaces are also computable
metric spaces. However, the notion of a space with an effective mesh is not generally
comparable with the notion of a computable metric space.

4.1.3 Examples

Let us begin by extending an example from [46].

Example 4.1.8. For m ∈ ω, m-dimensional Euclidean space Rm–as a metric space
whose metric is based on a Borel measure ν on Rm–is a net space when paired with the
net Qm composed of all half-open, dyadic rational cubes (as defined in Section 1.2). In
fact, Qm is a Rogers net on Rm. We have (M3) since for each x there exists a sequence
(Qj)j ⊂ Qm such that ⋂j Qj = {x} and ν satisfies continuity from above. A simple
dove-tailing algorithm can index Qm while respecting the containment relation. Under
this enumeration (Qi)i∈ω, it is also straightforward to compute the containment relation,
predecessor relation, and indices of any root elements (those cubes with n = 0).

In particular, Rm with the usual Euclidean metric has an effective Rogers net. Notice
that diam(Q(z, a, n)) =

√
m · 2−n is a computable function. The centers of all cubes in

Qm constitute a dense subset of Rm with computable pairwise distances. Therefore, Rm

under the Euclidean metric and dyadic cubes net make a computable net space.

Another example comes from [55].

Definition 4.1.9. A metric space (Ω, d) is said to be an ultrametric space if, whenever
x, y, z ∈ Ω, then

d(x, z) ≤ max {d(x, y), d(y, z)} .

Example 4.1.10. Let (Ω, d) be a separable ultrametric space. Then Ω has many layered-
disjoint nets. Fix a strictly-decreasing sequence of positive reals (di)i∈ω converging to
zero. And fix a countable, dense sequence (xj)j∈ω in Ω. For any x ∈ Ω and i ∈ ω, denote:

N(x, i) := {y ∈ Ω : d(y, x) ≤ di} .

We claim that the collection N := {N(xj, i) : i, j ∈ ω} is a net on Ω. Since Ω is an
ultrametric space, each N(x, i) is open and non-empty containing x. Again, Ω being
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an ultrametric space gives us the following fact: if ever we have for some x, y ∈ Ω and
0 ≤ i ≤ j that N(x, i) ∩ N(y, j) ̸= ∅, it follows that that exists z in their intersection
satisfying,

d(x, z) ≤ di and d(y, z) ≤ dj =⇒ d(x, y) ≤ max {di, dj} = di.

Thus, for any w ∈ N(y, j), both d(x, y) ≤ di and d(y, w) ≤ di, giving d(x,w) ≤ di as well.
Thus, w ∈ N(x, i). This means that any nontrivial overlap between two elements implies
the elements are comparable under containment, giving (N4′). Since diamd(N(x, i)) ≤ di,
the mesh axiom (M3) follows. Finally, if x ∈ Ω and i ∈ ω, we consider which N(y, j)
might contain N(x, i). And since (di)i is strictly-decreasing, there must exist some
smallest k + 1 ∈ ω so that N(x, k + 1) is a proper subset of N(x, i). By (N4′), any
N(y, j) ⊇ N(x, i) must then match one of the finitely many elements N(x, 1), N(x, 2),
..., N(x, k). This gives (M2). So N is indeed a layered-disjoint net on Ω.

Example 4.1.11. Take Baire space ωω, equipped with the product topology from the
discrete topology on ω and the compatible metric:

d(α, β) :=

0 α = β,

2− min{i:α(i)̸=β(i)} α ̸= β,
α, β ∈ ωω.

First, notice that d is in fact an ultrametric under which Baire space is separable and has
no isolated points. By Example 4.1.10, this ultrametric space has many layered-disjoint
nets. We may find an effective one explicitly.

If I ⊂ ω is a finite set of indices with corresponding tuple of fixed values xI = (xi ∈
ω : i ∈ I), then the cylinder set above xI is defined as the set:

C[xI ] := {α ∈ ωω : α(i) = xi for all i ∈ I} .

Denote the countable collection of all such cylinder sets by C: the usual collection of
basic open sets which generates the product topology on Baire space. We see that C
forms a mesh over Baire space. For any n ∈ ω and α ∈ ωω, it holds that α ∈ C[α ↾ n]
and ⋂

n C[α ↾ n] = {α}, which forms an infinite, nesting sequence of net elements
with diameters shrinking to zero under d. This gives (M3). But C is not a net on
Baire space. The two incomparable cylinders C[α0 = 0] and C[α1 = 0] constitute a
minimal counterexample to (N4): their intersection is yet another cylinder of the form
C[α ↾ 2 = (0, 0)]. Instead, we take the sub-collection N ⊂ C comprising only those
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cylinders above tuples defined on initial segments of ω: i.e., N := {C[σ] : σ ∈ ω<ω}. In
fact, this collection N generates the same product topology as C on Baire space, and
further qualifies as a net.

Since any non-trivial intersection between two cylinders from N implies their com-
parability, we have (N4′). Notice too that the chain (C[α ↾ n])n∈ω ⊂ C we previously
identified to represent a given sequence α only employs cylinders from N . It is com-
putable to obtain an enumeration of N respecting containment, and this enumeration can
compute the containment relation, predecessor relation, and indices of any root elements
(i.e., C[()]). Notice too that the diameter function on N is computable: for any σ ∈ ω<ω,

diamd(C[σ]) = 2− len(σ).

So, the net N has a computable ω-presentation R, meaning N is an effective Rogers
net on (ωω, d). Moreover, selecting from each C[σ] the point σ⌢0ω, one may effectively
compute their pairwise distances using the enumeration of N . So (ωω, d,N ,R, (σ⌢0ω)σ)
constitutes a computable net space.

Example 4.1.12. Consider the field of p-adic numbers Qp where p ∈ ω is prime, along
with the standard p-adic norm |·|p. The p-adic norm actually induces an ultrametric
on Qp with computable dense subset Q. By Example 4.1.10, this ultrametric space has
many layered-disjoint nets.

If I is an initial segment of Z with corresponding tuple aI = (ai ∈ {0, ..., p− 1} : i ∈ I)
of fixed values–only finitely many of which may be non-zero–then the cylinder set above
aI is defined as the set:

C[aI ] :=

x ∈ Qp : x =
∑
i∈Z

xip
i, where xi ∈ {0, ..., p− 1} and xi = ai for all i ∈ I

 .
We only permit tuples aI of all zero values if I is an initial segment containing 0. Denote
the countable collection of all cylinder sets above permitted tuples by C: a collection
of basic open sets which generates the product topology on Qp (being the product of
the topology on Zp, which is itself a product topology from the discrete topology on
{0, ..., p− 1}). We claim that C is an effective Rogers net on Qp.

Clearly, C is countable. A superset in C of a cylinder C[aI ] ∈ C must be a cylinder
above the nonzero restriction of aI to some initial segment of I. There are only finitely
many such restrictions, so we have (M2). For any C[aI ], if the restriction C[aI\{max(I)}]
of aI to the next shortest initial segment is a cylinder in C, then C[aI\{max(I)}] is the
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immediate predecessor of C[aI ]. Otherwise, C[aI ] has no immediate predecessor. It
is straightforward to check that any two overlapping cylinders from C must be above
tuples which agree on a common initial segment of ω, so are necessarily comparable.
This gives (N4′). Now, if x ∈ Qp, then x is uniquely expressible in the form pk · u
for some k ∈ Z and invertible u ∈ Z×

p , where Zp is the ring of p-adic integers. Then
(C [x[k, ..., k + n− 1]])n∈ω is an infinite, nested chain of cylinders from C each containing
x and shrinking in diameter to zero, since,

diamp(C [x[k, ..., k + n− 1]]) = p−(k+n) → 0 as n → ∞.

This gives (M3). We may index these cylinders by ω as follows: lexicographically order
all of the tuples whose earliest non-zero value occurs at a common index k, where we
consider the symbols to be ordered according to 0 < 1 < · · · < p − 1 < blank; then
interleave those orders across all k ∈ Z in the fashion k = 0,+1,−1,+2,−2, .... From
this effective enumeration of C, one may compute the containment relation, immediate
predecessor relation, and the indices of all root elements (i.e., those tuples which are only
non-zero on the last index of the initial segment on which they are defined). Moreover,
the diameter function is computable from the index of the cylinder, so C is indeed an
effective Rogers net on Qp. Finally, selecting the point x = ∑

i∈I aip
i from C[aI ] provides

a dense subset with computable pairwise distances. This dense subset and effective net
C make Qp a computable net space.

4.1.4 Comparison to Nicely Covered Metric Spaces

We may view the development of algorithmic information theory over net spaces as a
generalization of the work done in [46] for those metric spaces with computable nice
covers. Let us recall the definition of a computably nicely covered metric space.

Definition 4.1.13. Let (Ω, d) be a metric space without isolated points. A nice cover
of Ω is a sequence (Bn)n with Bn ⊆ P(Ω) for each n ∈ ω satisfying the axioms:

(A1) For each n ∈ ω and each U ∈ Bn, we have |{V ∈ Bn+1 : V ⊆ U}| < ∞.

(A2) For each n ∈ ω, each U ∈ Bn, and each m < n, there exists a unique V ∈ Bm such
that U ⊆ V .

(A3) For each n ∈ ω, we have inf {diamd(U) : U ∈ Bn} > 0.
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(A4) There exists c ∈ ω such that for each A ⊆ Ω with 0 < diamd(A) < 1, there exists
{U1, ..., Uc} ⊆ ⋃

n Bn such that,

A ⊆
c⋃

i=1
Ui and (∀i ∈ ω)[diamd(Ui) < c · diamd(A)].

Furthermore, if (Bn)n is a nice cover of Ω, Σ is a finite alphabet, and δ : Σ<ω → ⋃
n Bn is

a bijection, then it is said that (Ω, (Bn)n, δ) has a computable nice cover if both:

(B1) diamd ◦ δ is a computable function, and

(B2) The function succ : Σ<ω × ω → Σ<ω on pairs (w, n) satisfying δ(w) ∈ Bn, defined
by succ(w, n) = ⟨w1, ..., wk⟩ and {V ∈ Bn+1 : V ⊆ δ(w)} = {δ(w1), ..., δ(wk)} is
computable. That is, there is a computable map giving the indices of immediate
successors of the cover element with the given index w.

Proposition 4.1.14. If (Ω, δ) has a computable nice cover (Bn)n, then N := ⋃
n Bn is a

layered-disjoint net on Ω with an ω-presentation R computable in β′ (the Turing jump
of β), where β : ω → Σ<ω is some bijection such that δ ◦ β : ω → N is an indexing of N
respecting set-inclusion.

Proof. We first check that the mesh and net axioms are met.

(M1) δ is a bijection between Σ<ω and N . So N is countable.

(M2) By induction on the layer n, (A2) implies that the the number of supersets of an
element of N is no greater than the layer at which the element lies.

(M3) Let x ∈ Ω and fix 0 < ε < 1. Since x is not isolated, there exists a subset x ∈ A ⊆ Ω
satisfying 0 < diamd(A) < ε. Thus, by (A4), there exists {U1, ..., Uc} ⊆ N covering
A and satisfying diamd(Ui) < c · diamd(A) for each 1 ≤ i ≤ c. Let i be an index
for which x ∈ Ui. Then,

diamd(Ui) < c · diamd(A) < c · ε.

As ε > 0 was arbitrary, we may indeed find cover elements of arbitrarily small
diameter covering x.

(N4′) By induction on the layer n, no element of N may have two incomparable supersets
from the cover N without violating (A2).
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Now, denote ι := δ ◦ β. Then we may compute an ω-presentation R of N as follows:

• By (B2), in : ω2 → {⊤,⊥} may be defined by the Σ1-formula in γ: that in(i, j)
holds if and only if:

(∃n,C ∈ ω)
 (C is the code for the tuple (i1, ..., in) ∈ ωn)

∧ (β(j) ∈ succ (β(i), len(β(i)))) ∧ · · · ∧ (β(in) ∈ succ (β(j), len(β(j))))

 .
• By (B2), pred : ω2 → {⊤,⊥} may be defined computably in β by the formula:

pred(i, j) : ⇐⇒ β(j) ∈ succ (β(j), len(β(j)))

• By (B1), diam : ω → [0,∞] may be defined computably in β by the formula:

diam(i) := (diamd ◦ δ)(β(i)).

• By (B2), root : ω → {⊤,⊥} may be defined by a Π1-formula in β:

root(i) : ⇐⇒ (∀w ∈ Σ<ω) [β(i) ̸∈ succ(w, len(w))] .

Therefore, R = ⟨in, pred, diam, root⟩ is an ω-presentation of N computable from β′, as
desired. Notice that the nice cover axioms (A1) and (A3) were not utilized in the course
of this proof.

4.2 Net Measures
For this section, fix a metric space (Ω, d).

4.2.1 Net Measures

Recall the essential definitions of geometric measure theory from Section 1.3. In particular,
we continue to use Method II for building outer measures from premeasures.

Definition 4.2.1. Let N be a net on Ω be a collection of subsets, and ρ a premeasure
on N ∪ {∅}. We call ρ a net premeasure for N . Then for each δ > 0, the ρ-dimensional
δ-content under Method II is denoted by Hρ

δ , while Hρ denotes the corresponding net
(outer) measure associated to ρ under Method II.
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It will serve us to establish a notion of comparability between premeasures.

Definition 4.2.2. If ν and ρ are both premeasures on Ω, we say that ν is comparable to
ρ (denoted ν ≍ ρ) if for all X ⊆ Ω,

Hν(X) = 0 ⇐⇒ Hρ(X) = 0.

Lemma 4.2.3. Let ν and ρ both be premeasures on Ω. Suppose for each X ⊆ Ω, there
exist functions f and g satisfying:

• f : [0,+∞] → [0,+∞] is continuous on the right on [0,+∞) and f(0) = 0,

• g : (0,+∞) → (0,+∞) satisfies g(δ) → 0+ as δ → 0+,

such that for all δ > 0,

Hν
δ (X) ≤ Hρ

δ(X) ≤ f
(
Hν

g(δ)(X)
)
. (4.1)

Then ν and ρ are comparable.

Proof. It is clear from (4.1) that Hρ(X) = 0 implies Hν(X) = 0 for all X ⊆ Ω. For the
reverse direction, assume Hν(X) = 0. Then by (4.1) and the assumptions on f and g,

Hρ(X) = lim
δ→0+

Hρ
δ(X) ≤ lim

δ→0+
f
(
Hν

g(δ)(X)
)

= f
(

lim
δ→0+

Hν
g(δ)(X)

)
= f(Hν(X)) = 0.

We will also make use of a stronger form of comparability which we call commensurate
up to multiplicative constants.

Definition 4.2.4. If ν and ρ are both premeasures on Ω, we say that ν and ρ are
commensurate up to multiplicative constants (denoted ρ = Θ(ν)) if there exist constants
0 < c ≤ C < +∞ such that for all X ⊆ Ω,

c · Hν(X) ≤ Hρ(X) ≤ C · Hν(X).

4.2.2 Net Dimension

Let us now introduce a notion of Hausdorff dimension restricted to a net.
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Definition 4.2.5. For any X ⊆ Ω, denote by dimN (X) the Hausdorff dimension of X
restricted to the net N , which is defined as:

dimN (X) := inf {s ≥ 0 : (∃ρ ≍ ρs) [X is ρ-null for the net premeasure ρ on N ]} ,

or +∞ when the infimum is taken over the empty set.

Equivalently, we may write this quantity in terms of the dimension functions:

dimN (X) = inf
{
s ≥ 0 : Hρs↾N (X) = 0

}
,

where, for any premeasure ρ on Ω, the notation ρ ↾ N denotes the premeasure obtained
by restricting ρ to N ∪ {∅}:

(ρ ↾ N )(X) =


ρ(X) X ∈ N ,

0 X = ∅,

undefined otherwise.

Unpacking the definitions, we may write Hausdorff dimension restricted to a net even
more explicitly:

dimN (X) = inf {s ≥ 0 : (H ↾ N )s(X) = 0} ,

where we may perform Method II on any premeasure ρ by covers consisting only of
elements from an arbitrary collection N ⊆ P(Ω):

(H ↾ N )ρ(X) := sup
δ>0

(H ↾ N )ρ
δ(X), where

(H ↾ N )ρ
δ(X) := inf

(Ci)i∈ω

{∑
i

ρ(Ci) : Ci ∈ N , diamd(Ci) ≤ δ,
⋃
i

Ci ⊇ X

}
.

For the same reasons as in the unrestricted case, this quantity is well-defined. Note that
as ρs ↾ N is a net premeasure on N , the computation of Hausdorff dimension restricted
to N permits only those covers whose cover elements are sourced from the net N . In the
case of dyadic cubes N = Q on Euclidean space, (H ↾ Q)s

δ matches K. Falconer’s M s
δ in

Chapter 5 of [13].
Note that one may also perform Method I restricted to an arbitrary collection
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N ⊆ P(Ω):

(H ↾ N )ρ
I (X) := inf

(Ci)i∈ω

{∑
i

ρ(Ci) : Ci ∈ N ,
⋃
i

Ci ⊇ X

}
.

We may now introduce net dimension.

Definition 4.2.6. For any X ⊆ Ω, define the net dimension of X to be:

dimnet(X) := inf {dimN (X) : N is a net on Ω} ,

or +∞ when the infimum is taken over the empty set.

Net dimension captures the ability to evaluate the Hausdorff dimension of a subset
only through the various nets that might exist on the underlying metric space.

4.2.3 Basic Facts about Net Measures

A few results about net measures come directly from Rogers [55], including the Increasing
Sets Lemma and a stability result. Both of these results apply to layered-disjoint nets,
which satisfy the stronger incomparability axiom (N4′).

Theorem 4.2.7 (Increasing Sets Lemma, Theorem 52 of [55]). Let N be a layered-disjoint
net on a metric space (Ω, d), and ρ be a net premeasure for N , and δ > 0. Then for any
increasing sequence (Xn)n∈ω of subsets of Ω, we have µ (⋃n Xn) = supn µ(Xn).

Theorem 4.2.8 (Stability, Theorem 53 of [55]). Let N be a layered-disjoint net on
a metric space (Ω, d) and ρ be a net premeasure for N . Define for each n ∈ ω the
sub-net N +

n by removing from N the first n many elements of positive diameter under
the indexing ι. Then Hρ

I (X) = supn(H ↾ N +
n )ρ

I = supn Hρ↾N +
n

I .

4.3 Net Semimeasures
Recall that in Section 1.8, we discussed two approaches towards mass spreading along
the cylinder sets over Cantor space, each of which admitted optimal elements and
corresponding complexity notions for points in Cantor space. We may extend these
approaches to maps which spread mass across the elements of a mesh, obtaining analogous
results about the existence of optimal elements and corresponding complexity notions.
As in Cantor space, a discrete assessment would not distinguish between elements of the
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mesh, whereas a continuous assessment would respect the DAG structure between mesh
elements encoded in the containment relation. We begin by defining a continuous mesh
semimeasure on a represented mesh space. For the rest of the section, fix a metric space
(Ω, d) and a represented mesh space (Ω,N ,R).

4.3.1 Continuous Mesh Semimeasures

Definition 4.3.1. A function M : ω → [0, 1] is a continuous mesh semimeasure on
(Ω,N ) if it satisfies both:

M(i) ≥
∑

pred(i,j)
M(j), and (4.2)

1 ≥
∑

root(i)
M(i), (4.3)

where root is the predicate encoding the root elements of N .

In words, the continuous semimeasure condition in (4.2) asks that the map spread
measure in such a way so that the measure assigned to a fixed mesh element is never
exceeded by the sum of the measure assigned to its immediate successors. The bound-
edness condition in (4.3) asks that the map begin with no more than unity amount of
measure across all of the mesh’s root elements. Note that the maps M : i 7→ 0 for all
i ∈ ω trivially qualifies as a continuous mesh semimeasure.

For a fixed mesh space (Ω,N ) and indexing ι, let E ⊑D i denote

[j ∈ E =⇒ ι(j) ⊆ ι(i)] ∧ [j, k ∈ E ∧ j ̸= k =⇒ ι(j) ∩ ι(k) = ∅],

meaning E is a collection of indices of mutually-disjoint mesh elements which are all
subsets of the i-th mesh element. If (Ω,N ,R) is in fact a represented net space, let
E ⊑PF i denote that E contains the indices of a collection of net elements whose addresses
in the associated forest G form a prefix-free collection all extending the address of the
i-th net element. Of course, E ⊑D i implies E ⊑PF i over net spaces, and the two are
equivalent over layered-disjoint nets.

A straightforward argument by induction gives the following result about how continu-
ous mesh semimeasures spread measure across incomparable sequences of mesh elements.
Compare this to Property 3.8 in [46].
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Proposition 4.3.2 (Generalized Kraft Inequality). Let M be a continuous mesh semimea-
sure. If E ⊑D i, then

M(i) ≥
∑
e∈E

M(e).

Moreover, we have an alternate characterization of continuous net semimeasures (i.e.,
the continuous mesh semimeasures over a net).

Proposition 4.3.3. M is a continuous net semimeasure if and only if both M satisfies
(4.3) and, for all i ∈ ω and E ⊑PF i,

M(i) ≥
∑
e∈E

M(e).

Recall the discussion from Section 1.4 on lower-semicomputability. A continuous mesh
semimeasure M on (Ω,N ) is lower-semicomputable if its lower-graph is computably enu-
merable relative to the given ω-presentation R. Collect into M all lower-semicomputable
continuous mesh semimeasures in N with respect to the given ω-presentation R. Then,
as in the case of Cantor space, a continuous semimeasure from M is optimal if it
multiplicatively dominates all other semimeasures from M.

Theorem 4.3.4. Over a given represented mesh space (Ω,N ,R), there exists an optimal
lower-semicomputable continuous mesh semimeasure.

Our proof will loosely follow the structure outlined in M. Li and P. Vitányi’s Theorem
4.5.1 for constructing an optimal lower-semicomputable continuous semimeasure over
some finitely-branching sequence space [29]. We will use that any element of M is
[0, 1]-valued, which follows from the second continuous mesh semimeasure property (4.3).

Proof. We build our optimal element using left-approximators to the continuous semimea-
sures in M. In the first step of the construction, we obtain an enumeration of left-
approximators f̂ to the non-negative, lower-semicomputable maps f ≥ 0. Then, in the
next step, each f̂ is turned into a left-approximator for some lower-semicomputable contin-
uous mesh semimeasure. Finally, we take a weighted sum of all these left-approximators
to the elements of M; this defines a computable map which left-approximates an optimal
element of M.

First, note that it is possible to enumerate all R-computable functions of the form
ϕ : ω2 → Q∩ [0,+∞). For any lower-semicomputable map f : ω → [0,∞), the discussion
in Section 1.4, guarantees that at least one of the ϕ above will left-approximate f .
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Next, use a given ϕ to define another map ψ : ω2 → R meant to be a left-approximator
to some semimeasure in M. By dovetailing this staged process across the enumeration
of all ϕ, we will have described a uniform algorithm for approximating all elements of M
from below (computably in R), exactly what is needed for building an optimal element
of M.

Stage r = 0 :
I n i t i a l i z e ψ(i, 0) = 0 f o r a l l i ∈ ω ;

Stage r > 0 :
I n i t i a l i z e the temporary v a r i a b l e ψ̃r(i) = 0 f o r a l l i ∈ ω ;
For i := r − 1 ,r − 2 , . . . , 0 do :

Set ψ̃r(i) = max
{
ϕ(i, r),∑j<r

{
ψ̃r(j) : pred(i, j)

}}
;

I f ∑{
ψ̃r(k) : root(k) ∧ k < r

}
> 1 :

Set ψ(i, r) := ψ(i, r − 1) f o r a l l i ∈ ω ;
E l se :

Set ψ(i, r) := ψ̃r(i) f o r a l l i ∈ ω ;

In words, we use ϕ(·, r) to build a semimeasure ψ̃r which only assigns non-zero values to
indices below r. So long as the proposed ψ̃r does not assign more than unit mass to the
roots of the mesh, we use ψ̃r to update ψ(·, r). Otherwise, we carry over the values of
ψ(·, r − 1) from the previous stage.

If at any stage the construction attempts to assign more than unit mass across the
root elements, the resulting ψ will not be updated beyond that stage. Such a map will
trivially satisfy ψ(·, r) : ω → R being a continuous mesh semimeasure for each r ∈ ω.

Otherwise, the map ψ is updated successfully at each stage. We have that the limiting
map Mϕ : i 7→ limr→∞ ψ(i, r) is a continuous mesh semimeasure on N . The second
condition (4.3) is clear, so it remains to demonstrate the first property (4.2).

Fix i ∈ ω. Should i have only finitely many immediate successors j, then by stage
r > max {j : pred(i, j)}, it is guaranteed by construction that ψ̃r(i) ≥ ∑

pred(i,j) ψ̃r(j).
So, in the limit,

ψ(i, r) ≥
∑

pred(i,j)
ψ(j, r).

Otherwise, i has infinitely many immediate successors. Note that by assumption,∑
pred(i,j) ψ(j) ≤ 1. In particular, this sum converges. Fix ε > 0. There exists a
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sufficiently large integer J ≫ 1 so that the partial sum satisfies:

∑
pred(i,j)

j<J

ψ(j, r) ≥
∑

pred(i,j)
ψ(j, r) − ε.

And for any stage r > J , it is guaranteed by construction that

ψ̃r(i) ≥
∑
i,j

j<J

ψ̃r(j) =⇒ ψ(i, r) ≥
∑
i,j

j<J

ψ(j, r) ≥
∑

pred(i,j)
ψ(j, r) − ε.

Since ε > 0 is arbitrary, we have exhibited the continuous mesh semimeasure property.
Thus, no matter ϕ, the limiting map Mϕ : i 7→ limr→∞ ψ(i, r) from this construction

will always satisfy Mϕ ∈ M.
Furthermore, for a given M ∈ M, there exists an R-computable left-approximator ϕ

to M where each map i 7→ ϕ(i, r) is itself a continuous mesh semimeasure. In that case,
the resulting map ψ = ϕ, and so Mϕ = M is the limiting map from this construction.
Therefore, we have an algorithm for left-approximating all the elements of M. Call
(ψn)n∈ω the enumeration of all R-computable left-approximators constructed from our
enumeration (ϕn)n∈ω of all maps ϕ, and (Mn)n∈ω the corresponding enumeration of all
their limiting maps.

We now build another R-computable map ψ as follows:

ψ : ω2 → Q ∩ [0, 1], ψ(i, r) :=
∑
n<r

ψn(i, r)
2n+1 ,

This map ψ is the left-approximator of some lower-semicomputable map M which
satisfies:

M : ω → [0, 1], M(i) :=
∑

n

Mn(i)
2n+1 .

We see that M is a continuous mesh semimeasure on N because for any i ∈ ω,

M(i) =
∑

n

Mn(i)
2n+1 ≥

∑
n

1
2n+1

∑
pred(i,j)

Mn(j) =
∑

pred(i,j)

∑
n

Mn(j)
2n+1 =

∑
pred(i,j)

M(j).

Moreover,

∑
root(i)

M(i) =
∑

root(i)

∑
n

Mn(i)
2n+1 =

∑
n

1
2n+1

∑
root(i)

Mn(i) ≤
∑

n

1
2n+1 · 1 = 1.
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Finally, we check that M is optimal. Fix M ∈ M, and let n ∈ ω be its index in the
enumeration of M, giving M ≡ Mn. Thus, for any i ∈ ω,

M(i) = Mn(i) ≤ 2n+1 · M(i).

As discussed in Section 1.8, the language of continuous mesh semimeasures may be
translated to that of supergales (also see [46]). In particular, given any ρ premeasure on
Ω, we might associate to the continuous mesh semimeasure M the ρ-mesh-supergale:

δ(i) :=


M(i)

ρ(ι(i)) ρ(ι(i)) > 0,

+∞ ρ(ι(i)) = 0.

It is straightforward to check that δ satisfies the ρ-mesh-supergale condition:

δ(i) · ρ(ι(i)) ≥
∑

pred(i,j)
δ(j) · ρ(ι(j)), for each i ∈ ω.

In particular, whenever ρ is a computable premeasure, the continuous mesh semimea-
sure M is lower-semicomputable if and only if its corresponding ρ-mesh-supergale is
constructive; i.e., lower-semicomputable in the ω-presentation R of N .

We might also extend the notion of an ρ-mesh-supergale succeeding on a point.

Definition 4.3.5. Fix a premeasure ρ on the mesh N . Then a ρ-mesh-supergale δ on
(Ω,N ) is said to succeed on x ∈ Ω if there exists an N -name (in)n ∈ R(x) of x such that:

lim sup
n→∞

δ(in) = +∞.

This form of success then translates to the following for continuous mesh semimeasures.

Definition 4.3.6. Fix a premeasure ρ on the mesh N . Then a continuous mesh
semimeasure M is said to ρ-succeed on x ∈ Ω if there exists an N -name (in)n ∈ R(x) of
x with

lim sup
n→∞

[
M(in)
ρ(ι(in))

]
= +∞,

where this ratio is defined as +∞ whenever ρ(ι(in)) = 0.
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These notions of success extend to subsets X ⊆ Ω by asking that the semimeasure or
supergale succeed on all elements of X.

Definition 4.3.7. Let M be a lower-semicomputable continuous mesh semimeasure on
N . For any index i ∈ ω, define its a priori mesh complexity under M as follows:

KMM(i) := − logM(i),

or +∞ whenever M(i) = 0. Call KM ≡ KMM the a priori mesh complexity.

Again, this notion of complexity depends on the ω-presentation R of N .
Note too that KM has an invariance property, stating that any optimal element of

M defines the same a priori complexity notion up to an additive constant. Compare this
to the invariance of the prefix complexity K up to the choice of universal prefix machine.

4.3.2 Discrete Mesh Semimeasures

Definition 4.3.8. A function m : ω → [0, 1] is a discrete semimeasure on (Ω,N ) if it
satisfies:

∑
i∈ω

m(i) ≤ 1. (4.4)

In words, the discrete semimeasure condition in (4.4) simply asks there not be more
than unit mass distributed across the countably many mesh elements. We might refer
to a discrete semimeasure defined on the ι-indices of the mesh N to be a discrete mesh
semimeasure with respect to N .

As in the continuous case, a discrete mesh semimeasure m on (Ω,N ,R) is lower-
semicomputable if its lower-graph is computably enumerable relative to the given ω-
presentation R. Collect into m all the lower-semicomputable discrete mesh semimeasures
in N with respect to the given ω-presentation R. Then, a discrete semimeasure from m

is optimal if it multiplicatively dominates all other semimeasures from m.

Theorem 4.3.9. Over a given represented mesh space (Ω,N ,R), there exists an optimal
lower-semicomputable discrete mesh semimeasure.

Again, we loosely follow the proof structure from Li and Vitányi’s Theorem 4.3.1,
which shows the existence of an optimal lower-semicomputable discrete semimeasure over
some finitely-branching sequence space [29].
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Proof. We build our optimal element using left-approximators to the discrete semimea-
sures in m. In the first step of the construction, we obtain an enumeration of left-
approximators f̂ to the non-negative, lower-semicomputable maps f ≥ 0. Then, in the
next step, each f̂ is turned into a left-approximator for some lower-semicomputable dis-
crete mesh semimeasure. Finally, we take a weighted sum of all these left-approximators
to the elements of m; this defines a computable map which left-approximates an optimal
element of m.

First, note that it is possible to enumerate all R-computable functions of the form
ϕ : ω2 → Q∩ [0,+∞). For any lower-semicomputable map f : ω → [0,∞), the discussion
in Section 1.4 guarantees that at least one of the ϕ above will left-approximate f .

Next, use a given ϕ to define another map ψ : ω2 → R meant to be a left-approximator
to some semimeasure in m. By dovetailing this staged process across the enumeration of
all ϕ, we will have described a uniform algorithm for approximating all elements of m
from below (computably in R), exactly what is needed for building an optimal element
of m.

Stage r = 0 :
I n i t i a l i z e ψ(i, 0) = 0 f o r a l l i ∈ ω ;

Stage r > 0 :
I f ϕ(0, r) + · · · + ϕ(r − 1, r) > 1 :

Set ψ(i, r) = ψ(i, r − 1) f o r a l l i ∈ ω ;
E l se :

Set ψ(i, r) := ϕ(i, r) f o r a l l i ∈ ω ;

In words, for a given stage r > 0, we only update ψ when ϕ(·, r) assigns no more than
unit mass across the mesh elements. Otherwise, we carry over the values of ψ(·, r − 1)
from the previous stage.

If at any stage the construction attempts to assign more than unit mass across the
mesh elements, the resulting ψ will not be updated beyond that stage. Such a map will
trivially satisfy ψ(·, r) : ω → R being a discrete mesh semimeasure for each r ∈ ω.

Otherwise, the map ψ is updated successfully at each stage. We that that the limiting
map mϕ : i 7→ limr→∞ ψ(i, r) is a discrete mesh semimeasure on N .

Furthermore, for a given m ∈ m, there exists an R-computable left-approximator
ϕ to m where each map i 7→ ϕ(i, r) is itself a discrete mesh semimeasure. In that case,
the resulting map ψ = ϕ, and so mϕ = m is the limiting map from this construction.
Therefore, we have an algorithm for left-approximating all the elements of m. Call
(ψn)n∈ω the enumeration of all R-computable left-approximators constructed from our
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enumeration (ϕn)n∈ω of all maps ϕ, and (mn)n∈ω the corresponding enumeration of all
their limiting maps.

We now build another R-computable map ψ as follows:

ψ : ω2 → Q ∩ [0, 1], ψ(i, r) :=
∑
n<r

ψn(i, r)
2n+1 ,

This map ψ is the left-approximator of some lower-semicomputable map m which satisfies:

m : ω → [0, 1], m(i) :=
∑

n

mn(i)
2n+1 .

We see that m is a discrete mesh semimeasure on N because for any i ∈ ω,

∑
i

m(i) =
∑

i

∑
n

mn(i)
2n+1 =

∑
n

1
2n+1

∑
i

mn(i) ≤
∑

n

1
2n+1 · 1 ≤ 1.

Finally, we check that m is optimal. Fix m ∈ m, and let n ∈ ω be its index in the
enumeration of m, giving m ≡ mn. Thus, for any i ∈ ω,

m(i) = mn(i) ≤ 2n+1 · m(i).

4.4 Kolmogorov Complexity on Net Spaces
There are multiple senses in which one might lift the notion of Kolmogorov complexity
from finitary objects to points in a mesh space. Each is inspired by its corresponding
version over either Euclidean or Cantor space. That the various versions agree in the
standard Euclidean and sequence spaces follows from the many orderly properties of the
prototypical meshes on those spaces. We use this section to argue what properties lend
themselves to asymptotic coincidence between these lifts.

4.4.1 Kolmogorov Complexity on Euclidean Space

We continue the discussions of Sections 1.7 and 2.1 to better understand how the lifts of
Kolmogorov complexity to Euclidean space might inspire lifts to mesh spaces.

The standard method for lifting prefix complexity to points in a metric space is via a
computable, dense subset. Recall that the complexity of an arbitrary subset X ⊆ Rm
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was defined as the minimal complexity of a rational in X (or +∞ if no such rational
exists). Intuitively, this definition captures the idea that a set is simple if it contains
a point that is simple to describe, and complex otherwise. Likewise, the complexity of
an arbitrary point x ∈ Rm is definable to some precision-level r ∈ ω as the minimum
complexity of a rational in the open 2−r-ball about x. Note that this is equivalent (up to
an additive constant) to evaluating the complexity of the dyadic truncation of x up to
precision 2−r as in Lemma 1.7.4 and to finding a K-minimizer to B2−r(x) as in Lemma
4.9 of [6].

Note that something similar is true in the conditional case using either the max-min
or min-max definitions of conditional prefix complexity Kr|s as discussed in Section 2.1.
Lemma 1.7.5 shows the ability for dyadic truncation to approximate Kr|s, and Proposi-
tion 2.1.9 does the same via K-minimizers.

Let us now introduce a third manner by which to approximate the lift of prefix
complexity to Euclidean space.

In Section 1.2, we defined the collection Qm of all dyadic rational cubes over Rm. If
Q ∈ Qm is a dyadic cube, let K(Q) denote the prefix complexity K(i) of the index of Q
in a standard (computable) enumeration of Qm. Then, let

Hr(x) := min {K(Q) : Q ∈ Qm and Q ⊆ B2−r(x)} ,

or +∞ if the minimum is taken over the empty set, denote a third lift of complexity
to points in Rm. Intuitively, this definition captures the idea that a point is simple if
there are always sufficiently simple dyadic cubes in its vicinity. Clearly, Hr(x) ≥+ Kr(x),
as the center cQ of any dyadic cube Q satisfying Q ⊆ B2−r(x) will satisfy cQ ∈ B2−r(x).
Yet, these notions do not differ significantly.

Proposition 4.4.1. For all m ∈ ω, x ∈ Rm, and r ∈ ω,

Kr(x) = Hr(x) ± o(r),

where o(r) is a sub-linear term in r independent of x.

Proof. By Lemma 1.7.4, it suffices to show Hr(x) = K(x ↾ r) ± o(r).
Suppose we are given any dyadic cube Q ⊆ B2−r(x). In particular, its center cQ is

rational and computable from Q, and approximates x ↾ r to a precision O(2−r). Thus,

K(x ↾ r) ≤ K(Q) +O(1) =⇒ K(x ↾ r) ≤ Hr(x) +O(1).
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In the other direction, notice that x ↾ r is a dyadic rational inside B2−r(x). A simple
geometric fact states that there must be one dyadic cube Q of side-length at least 1√

m
·2−r

which is a subset of the expanded ball: B2·2−r(x ↾ r). And by comparing volumes, there
can be no more than (4/

√
m)m many such dyadic cubes. Given x ↾ r, we may effectively

enumerate all dyadic cubes which are subsets of B2·2−r(x ↾ r) and simply specify any
one of them by providing its index in that enumeration. Such an index requires no
more than log((4/

√
m)m) = O(m logm) many bits to specify. And for any dyadic cube

Q ⊆ B2−r(x), it follows from the triangle inequality that Q ⊆ B2·2−r(x ↾ r), and so,

Hr(x) ≤ K(Q) ≤ K(x ↾ r) +K(r) +O(m logm) +O(1).

Another lift of prefix complexity to Euclidean space may be defined which does not
significantly differ from the rest. Let

Gr(x) := min
{
K(Q) : x ∈ Q ∈ Qm and diam(Q) ≤ 2−r

}
,

or +∞ if the minimum is taken over the empty set. Then, Gr(x) denotes a fourth
lift of prefix complexity to points in Rm. Intuitively, this definition captures the idea
that a point is simple if there are sufficiently small and simple dyadic cubes covering it.
Compared to Hr(x), this fourth notion Gr(x) minimizes prefix complexity over a smaller
class of dyadic cubes, since x ∈ Q and diam(Q) ≤ 2−r imply Q ⊆ B2−r(x), but not vice
versa. Nevertheless, we observe asymptotic coincidence between the two notions.

Proposition 4.4.2. For all m ∈ ω, x ∈ Rm, and r ∈ ω,

Kr(x) = Gr(x) ± o(r),

for some fixed o(r) term independent of x and r.

The proof of Proposition 4.4.2 is nearly identical to that of Proposition 4.4.1, noting
that exactly one of the at most (4/

√
m)m dyadic cubes in B2·2−r(x ↾ r) must contain x.

4.4.2 Kolmogorov Complexity on Mesh Spaces

In order to lift Kolmogorov complexity to points in a mesh space, we cannot necessarily
make use of a computable, dense subset of points or some notion of truncation as is
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typically done over Euclidean space. Instead, we might measure a point’s complexity by
the complexity of the mesh elements falling in a ball about the point at some precision-
level. This is exactly what Hr(x) and Gr(x) accomplish over Euclidean space with respect
to the dyadic cubes net. Over mesh spaces, we will use boldface characters H and G for
these finite-precision complexity notions.

Definition 4.4.3. For any x ∈ Ω and r ∈ ω, define the vicinity complexity of x up to
precision-level r with respect to the mesh N as:

Hr(x) := min {K(i) : ι(i) ⊆ B2−r(x)} .

Definition 4.4.4. For any x ∈ Ω and r ∈ ω, define the covering complexity of x up to
precision-level r with respect to the mesh N as:

Gr(x) := min
{
K(i) : x ∈ ι(i) ∧ diam(i) ≤ 2−r

}
.

In order to show asymptotic coincidence between these two notions of complexity, we
will need to ask more from the mesh.

Definition 4.4.5. If N is a net on Ω, we call N a grate on Ω if it further satisfies: there
exist both a function f : ω → [1,+∞) and an o(r) function g : ω → R such that for all
precision-levels r ∈ ω:

(G5) For all x ∈ Ω, there exists N ∈ N such that x ∈ N and diamd(N) ∈
[
2−r−f(r), 2−r

]
;

(G6) For all N ∈ N satisfying diamd(N) ≤ 2−r, it holds that

log
∣∣∣{N ′ ∈ N : N ∩N ′ ̸= ∅ and diamd(N ′) ∈

[
2−r−f(r), 2−r

]}∣∣∣ ≤ g(r).

In words, the grate axioms ask that:

(G5) For each point there is a grate element covering it at every precision-level;

(G6) For each grate element, there are no more than sub-exponentially many other grate
elements non-trivially intersecting it at each smaller precision-level.

When N is a grate, we should additionally include f and g in the ω-presentation R

of the grate, as well as another relation encoding intersection between grate elements:
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• int : ω2 → {⊤,⊥} is a relation on pairs of indices encoding the non-trivial intersec-
tion relation; i.e., if Ni, Nj ∈ N satisfy ι(i) = Ni and ι(j) = Nj, then,

int(i, j) ⇐⇒ Ni ∩Nj ̸= ∅.

For any grate N on a metric space (Ω, d) represented by the ω-presentation R as described
above, we may call the pair (Ω,N ) a grate space and the tuple (Ω,N ,R) a represented
grate space.

We now show that vicinity and covering complexities agree asymptotically on grate
spaces. Our proof of this agreement relies on the density of the mesh along each
precision-level.

Proposition 4.4.6. For any grate space (Ω,N ), x ∈ Ω, and r ∈ ω,

Hr(x) = Gr(x) ± o(r),

for some sublinear term o(r) independent of x.

Proof. Let ι index N while respecting containment. First, we immediately have that
Hr(x) ≤ Gr(x), since x ∈ ι(i) and diam(i) ≤ 2−r together imply ι(i) ⊆ B2−r(x) via the
triangle inequality.

In the other direction, let i ∈ ω satisfy the vicinity condition ι(i) ⊆ B2−r(x). Recall
that for grate spaces, we have augmented their ω-presentation to encode f(r) and the
non-trivial intersection relation, int. So, using i and r, we may computably enumerate in
the ω-presentation of the grate N all indices j ∈ ω satisfying:

int(i, j) and diam(j) ∈
[
2−r−f(r), 2−r

]
.

By (G5), one such j = j∗ further satisfies x ∈ ι(j∗). And by construction, diam(j∗) ≤ 2−r,
qualifying j∗ for the covering condition that defines Gr(x). Moreover, (G6) guarantees
that this enumeration is not too large: there are no more than 2g(r) many indices in the
enumeration, where g(r) is the o(r) function guaranteed in the grate axioms. Therefore,
using a two-part description for j∗ with respect to this enumeration, we conclude:

K(j∗) ≤ K(i) + ⌈g(r)⌉ +K(r) +O(1) = K(i) + o(r),

so, Gr(x) ≤ Hr(x) + o(r), as desired.
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We might take either one of these quantities Gr or Hr as our primary definition of
prefix complexity over a mesh space. Anticipating the results of the following section, we
select Kr := Gr as the prefix complexity of x with respect to the mesh N .

Example 4.4.7. Continuing with the Lebesgue measure and the dyadic cube net Qm

on Euclidean space as introduced in Example 4.1.8, we show that (Rm,Qm) is a grate
space. Note that the non-trivial intersection relation is also easily computable from the
enumeration of Qm. Fixing r ∈ ω and x ∈ Rm, it is clear that there exists a dyadic cube
Q of side-length 2−r−⌈log

√
m⌉ satisfying x ∈ Q. The diameter of this cube is:

diamd(Q) = 2−r−⌈log
√

m⌉ ·
√
m ≤ 2−r.

Setting f(r) := ⌈log
√
m⌉, we conclude (G5). Note that non-trivial intersection between

dyadic cubes implies comparability: one is a subset of the other. So, we may also bound
from above the number of dyadic cubes having diameter in the interval [2−r−f(r), 2−r]
and non-trivially intersecting Q:

⌈f(r)⌉∑
i=1

(2m)i ≤ 2m(⌈f(r)⌉+1) = 2(⌈log
√

m⌉+1).

Setting g(r) := ⌈log
√
m⌉ + 1 = O(1), we conclude (G6) as well. Thus, (Rm,Qm) is a

grate space; so, by Proposition 4.4.6, Hr(x) = Gr(x)±o(r) for all x ∈ Rm, a fact we have
already seen as a consequence of Propositions 4.4.1 and 4.4.2. We further have that the
non-trivial intersection relation is equivalent to the containment relation for this grate,
and f(r) is a computable function, so Qm has a computable ω-presentation, meaning Qm

qualifies as an effective grate on Rm. So Rm with Qm is in fact a computable grate space.

4.4.3 Optimality of Outer Measures on Computable Net Spaces

We still have not explicitly defined the Kolmogorov complexity of an arbitrary subset of
a mesh space. For instance, it is possible to view vicinity complexity as induced by the
following complexity notion on subsets: for any X ⊆ Ω,

H(X) := min {K(i) : ι(i) ⊆ X} , so Hr(x) := H(B2−r(x)).

However, this complexity notion is not particularly useful. For instance, N. Lutz argues
how the map κ(X) := 2−K(X), which possesses many algorithmic optimality properties,
is an outer measure on Rm [35, 36]. In contrast, X 7→ 2−H(X) is not even necessarily
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countably subadditive. This is because little is guaranteed about how the mesh behaves
topologically: while each subset Xi ⊆ Ω in a countable sequence could contain only mesh
elements of very high complexity, their union ⋃i Xi could contain a much larger mesh
element of low complexity. However, on computable net spaces, it is indeed possible to
define a reasonably well-behaved complexity notion for arbitrary subsets.

Let us now extend some of the algorithmic optimality results found in [35] to any
computable net space (Ω, d,N ,R, α). We use the notation P<ω(α) to refer to the
collection of finite subsets of the computable dense sequence α. And, given an element
N ∈ N , denote by KN (N) := K(i) the net-complexity of N , evaluated on its index:
ι(i) = N . The following three properties of an outer measure will comprise our notion of
global optimality, an optimality notion similar to that of the optimal lower-semicomputable
discrete semimeasure m.

Definition 4.4.8. An outer measure µ on Ω is finitely supported on α if, for every ε > 0,
there exists A ∈ P<ω(α) such that µ(Ω \ A) < ε.

Definition 4.4.9. An outer measure µ on Ω is strongly finite if µ is supported on α and

∑
q∈α

µ({q}) < +∞.

Definition 4.4.10. An outer measure µ on Ω is lower-semicomputable if it is finitely
supported on α and there is a computable function (witness) µ̂ : P<ω(α)×ω → Q∩[0,+∞)
such that for all A ∈ P<ω(α) and r ∈ ω,

µ̂(A, r) ≤ µ̂(A, r + 1) ≤ µ(A), and lim
r→∞

µ̂(A, r) = µ(A).

Let Θ be the set of all strongly finite, lower-semicomputable outer measures on Ω.

Definition 4.4.11. An outer measure µ on Ω is globally optimal if µ ∈ Θ and multi-
plicatively dominates any other θ ∈ Θ, i.e., for any θ ∈ Θ, there exists β ∈ (0,+∞) such
that for each X ⊆ Ω,

µ(X) ≥ β · θ(X).

By the same arguments found in [35] (see Lemma 3.3 and Theorem 3.4), there exist
globally optimal outer measures on computable metric spaces.

Proposition 4.4.12. Over any computable metric space (Ω, d, α), there exists a globally
optimal strongly finite, lower-semicomputable outer measure θ.
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Their construction follows a similar format as Theorems 4.3.4 and 4.3.9, producing
an optimal outer measure as a weighted sum of all those found in Θ. We next define the
prefix complexity of an arbitrary subset X ⊆ Ω in a computable metric space (Ω, d, α) as:

K(X) := min {K(q) : q ∈ X ∩ α} , (4.5)

where K(q) is defined as K(i), and q = αi = χ(i) has index i = index(q) in the
enumeration of the computable dense subset.

From (4.5), we define what we will refer to as the prefix measure of a subset X ⊆ Ω
as follows:

κ(X) := 2−K(X).

It is easy to check that κ is indeed an outer measure on Ω, as well as lower-semicomputable
and strongly finite. That κ is lower-semicomputable follows from the upper semi-
computability of K. That κ is finitely supported on α follows from the fact that
Aε :=

{
q ∈ α : K(q) ≤ log2

1
ε

}
is a finite subset of α accounting for all but at most ε

amount of the measure that κ places on Ω. And that κ is strongly finite then follows
from the Kraft Inequality 1.6.4:

∑
q∈α

κ({q}) =
∑
q∈α

2−K({q}) ≤ 1.

It turns out that κ is not globally optimal over Ω. To see this, let us first define the
subset-analogues of each of the equivalent quantities in Levin’s Coding Theorem 1.8.2:

µ(X) :=
∑

q∈X∩α

µ(q),

Q(X) :=
∑

q∈X∩α

Q(q) =
∑

UPF(π)↓∈X∩α

2− len(π),

R(X) :=
∑

q∈X∩α

R(q) =
∑

q∈X∩α

2−K(q),

where µ(q), Q(q), and R(q) are evaluated as m(i), Q(i), and R(i), respectively, for index
i of q in α. Notice that for any X ⊆ Ω,

κ(X) ≤ R(X) ≤ Q(X).

The same discussion in [35] works to show that each of these maps defined above is
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a strongly finite, lower-semicomputable outer measure on Ω. In fact, each is globally
optimal.

Proposition 4.4.13. Each of µ, Q, and R is globally optimal on Ω.

Proof. By Levin’s Coding Theorem 1.8.2, each of µ, Q, and R multiplicatively dominate
the others as functions on α. So, by definition, µ, Q, and R dominate each other as outer
measures from Θ. Moreover, for any θ ∈ Θ, we claim that µ dominates θ. Note that
θ induces the discrete semimeasure: i 7→ θ({αi}). So, by the assumptions on θ as well
as the optimality of m as a discrete semimeasure, we conclude there exists β ∈ (0,+∞)
such that for any X ⊆ Ω:

θ(X) ≤ θ(X ∩ α) + θ(X \ α)

≤
∑

q∈X∩α

θ({q}) + θ(Ω \ α)

≤ 1
β

∑
q∈X∩α

µ({q}) + 0

= 1
β

· µ(X).

Lemma 4.4 of [35] may be adapted to (Ω, d, α) to find a family of subsets of Ω
exhibiting κ failing to dominate R. Given a constant β > 0, they construct a set Xβ =
{q ∈ α : K(q) > η} for some sufficiently large constant η > 0 satisfying η −O(log η) <
log β and exhibiting κ(Xβ) < β · R(Xβ). Notice that by definition, κ(Xβ) < 2−η, while

R(Xβ) =
∑

q∈Xβ∩α

2−K(q) ≥
∑

q∈Xβ∩α
K(q)<η+O(log η)

2−K(q)

≥ 2−(η+O(log η)) · |{q ∈ α : K(q) ∈ (η, η +O(log η))}| .

Then, by a short counting argument, they lower-bound the cardinality of the set appearing
above by 2η, giving R(Xβ) ≥ 2−O(log η). Thus, κ(Xβ) < β · R(Xβ), showing κ is not
globally optimal.

Definition 4.4.14. Let µ and θ be outer measures on Ω and X be a layered disjoint
system over Ω (in the sense of [35]). Then µ is said to dominate θ on X if there exists
a map β : ω → (0,+∞) such that − log β(r) = o(r) as r → ∞, and for each r ∈ ω and
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X ∈ X (r) in the r-th layer of X ,

µ(X) ≥ β(r) · θ(X).

Recall that for any layered-disjoint net N , the sequence of rank layers (N (r))r∈ω

induces a layered disjoint system in the sense of [35]. So we may discuss domination on
any layered-disjoint net.

Definition 4.4.15. An outer measure µ on net space (Ω,N ) is locally optimal if µ ∈ Θ
and for each θ ∈ Θ, µ dominates θ on N .

Theorem 4.4.16. Over any computable net space (Ω, d,N ,R, α) with a layered-disjoint
net N , we have that κ is locally optimal.

Proof. From before, κ ∈ Θ. We claim for each θ ∈ Θ, κ dominates θ on N . Denote for
each i ∈ ω:

mθ(i) := θ({αi}).

Then mθ is a lower-semicomputable discrete net semimeasure and hence multiplicatively
dominated by m: let γ ∈ (0,+∞) satisfy m(i) ≥ γ · mθ(i) for each i ∈ ω. Recall the
notation N (r) for the collection of all net elements with rank r. Then (N (r) : r ∈ ω) is a
layered disjoint system, and hence obeys the LDS Coding Theorem (Theorem 3.1 of [6]).
In particular, we have for each N ∈ N (r):

KN (N) ≤ − log Q(N) +K(r) +O(1) ≤ − logµ(N) +K(r) +O(1). (4.6)

Call β(r) = γ · 2−K(r)−O(1) using the same additive constant as in the LDS Coding
Theorem. Notice that indeed − log β(r) = o(r). Then for each N ∈ N (r), we use that θ
is both countably subadditive and finitely supported on α, as well as (4.6), to confirm:

κ(N) = 2−K(N)

≥ 2−KN (N)

≥ 2−K(r)−O(1) · µ(N)

= 2−K(r)−O(1) ·
∑

q∈N∩α

µ(q)

≥ 2−K(r)−O(1) ·
∑

q∈N∩α

γ ·mθ(q)
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= β(r) ·
∑

q∈N∩α

θ({q})

≥ β(r) · θ(N).

We now ask how the complexity KN (N) of the address of an element N with respect
to the tree structure of N compares to the complexity K(N) as a subset of Ω? We
have already used the fact that K(N) ≤ KN (N): if ι(i) = N , then αi ∈ N , and
K(αi) = K(i) = KN (N). The other direction follows given some stronger assumptions
about the net.

Proposition 4.4.17. Let (Ω, d,N ,R, α) be a computable grate space. Then, for each
N ∈ N ,

KN (N) = K(N) ± o (− log diamd(N)) ,

where the o(·) term vanishes like o(− log diamd(N))
log diamd(N) → 0 as diamd(N) → 0.

Proof. Let f and g be as in the definition of a grate space. Take N ∈ N and r ∈ ω such
that diamd(N) ∈ [2−r−f(r), 2−r]. Further suppose i, j ∈ ω are such that ι(i) = N and
αj ∈ N with minimal complexity K(j). We may compute i from j as follows: by (G6),
there are no more than 2g(r) net elements non-trivially intersecting ι(j) with diameter in
this same range [2−r−f(r), 2−r]. Thus, N may be computed by specifying an index in this
collection, giving

KN (N) = K(i) ≤ K(j) + ⌈g(r)⌉ + 1 +O(1) ≤ K(N) + o(− log diamd(N)).

Finally, we ask whether K is compatible with G and H as complexity notions on
points. In particular, we extend K to arbitrary points of the metric space at fixed
precision-levels:

Kr(x) := K(B2−r(x)).

Note that this complexity notion plays an analogous role to Cδ(x) in [33], where δ = 2−r.
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Proposition 4.4.18. For any grate space (Ω,N ), x ∈ Ω, and r ∈ ω,

Kr(x) = Hr(x) ± o(r) = Gr(x) ± o(r),

for some sublinear terms o(r) independent of x.

The second equality above restates Proposition 4.4.6. And the proof of the above
result mimics those of Propositions 4.4.1 and 4.4.17.

4.5 Effective Dimension on Net Spaces
In this section we extend the results of Section 1.9 by introducing and comparing multiple
real-valued functions on a mesh space which attempt to capture the information density
of individual points. For the rest of the section, fix a represented mesh space (Ω,N ,R).
For notational convenience, if dim is a dimension on subsets of Ω, we will sometimes use
dim(x) for dim({x}).

4.5.1 Local Dimension of Semimeasures

From any mesh semimeasure, we may produce a Billingsley-type, algorithmic, pointwise
dimension. Define the local dimension of a (discrete or continuous) mesh semimeasure as
follows.

Definition 4.5.1. If m is a (discrete or continuous) mesh semimeasure on N , the (lower)
local dimension of x ∈ Ω under m with respect to N is:

dimloc m(x) = inf
{

lim inf
n→∞

log m(in)
log diam(in) : (in)n ∈ R(x)

}
,

where the ratio is defined to be zero whenever diam(in) = 0. And if X ⊆ Ω, then the
(lower) local dimension of m on X with respect to N is:

dimloc m(X) = sup
x∈X

dimloc m(x).

Given a represented mesh space (Ω,N ,R), we let MR and mR be the optimal
semimeasures constructed in Theorems 4.3.4 and 4.3.9, respectively. As R is fixed in
this section, we may drop the reference to it in the notation, writing M and m.
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Just as M is a multiplicatively-largest, lower-semicomputable (in R) continuous mesh
semimeasure on N , its local dimension dimloc M is the multiplicatively-largest local
dimension arising from lower-semicomputable continuous mesh semimeasures. We call
dimloc M(·) the (lower) continuous local dimension (with respect to mesh (Ω,N ,R)),
which is invariant under any choice of optimal semimeasure M.

Similarly, as m is the multiplicatively-largest, lower-semicomputable (in R) discrete
mesh semimeasure on N , its local dimension dimloc m is the multiplicatively-largest
local dimension arising from lower-semicomputable discrete mesh semimeasures. We call
dimloc m(·) the (lower) discrete local dimension (with respect to mesh (Ω,N ,R)), which
is invariant under any choice of optimal semimeasure m.

4.5.2 Constructive Dimension

Following J. Lutz’s work over Cantor space in [31], we define the constructive dimension
cdim(x) of a point x as the infimum over all s ≥ 0 for which there exists a constructive
s-mesh-supergale succeeding on x.

Definition 4.5.2. For any subset X ⊆ Ω, the (weak) constructive dimension of X (with
respect to (Ω,N ,R)) is defined as:

cdim(X) = inf {s ≥ 0 : there is an R-constructive s-mesh-supergale succeeding on X}

= inf

s ≥ 0 :
there is am R-lower-semicomputable continuous

mesh semimeasure s-succeeding on X

 .
Note that we may as well define constructive dimension with respect to any optimal

lower-semicomputable continuous mesh semimeasure, since if some M ∈ M were to
indeed s-succeed on X, then so too would M s-succeed on X:

cdim(X) = inf
{
s ≥ 0 : (∃M ∈ M)(∀x ∈ X)(∃(in)n ∈ R(x))

[
lim sup

n→∞

M(in)
diam(in)s

= +∞
]}

= inf
{
s ≥ 0 : (∀x ∈ X)(∃(in)n ∈ R(x))

[
lim sup

n→∞

M(in)
diam(in)s

= +∞
]}

.

As the success notions for continuous semimeasures and supergales coincide, we see:

Proposition 4.5.3. For any represented mesh space (Ω,N ,R) and any subset X ⊆ Ω,

dimloc M(X) = cdim(X).
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4.5.3 Incompressibility Dimension

Definition 4.5.4. The (lower) incompressibility ratio of a subset X ⊆ Ω (with respect
to (Ω,N ,R)) is defined in two manners:

γ(X) := sup
x∈X

lim inf
r→∞

Gr(x)
r

, and η(X) := sup
x∈X

lim inf
r→∞

Hr(x)
r

.

Over net spaces, the incompressibility ratio γ and the local continuous dimension
dimloc M coincide.

Theorem 4.5.5. For any represented net space (Ω,N ,R) and subset X ⊆ Ω,

dimloc M(X) = γ(X).

Proof. Let us show that dimloc M(X) ≥ γ(X). Take any rational s > dimloc M(X). For
each ℓ ∈ ω, define the set of indices:

Aℓ :=
{
i ∈ ω : M(i)

diam(i)s
≥ 2ℓ

}
.

Then, for any ℓ ∈ ω, since M is [0, 1]-valued, it holds that for any i ∈ Aℓ,

diam(i) ≤
(
M(i) · 2−ℓ

)1/s
≤ 2−ℓ/s. (4.7)

Claim: If E ⊆ ω is a prefix-free collection of indices of net elements (i.e., having a
prefix-free collection of addresses in the forest G associated to N ), then for any r ∈ ω,

|Br ∩ E| ≤ 2−ℓ+rs+s, where Br :=
{
i ∈ Aℓ : diam(i) > 2−r−1

}
.

Proof. For each k ∈ ω satisfying root(k), let Ek denote the collection of indices in E for
subsets of the root element with index k, i.e.,

Ek := {i ∈ E : in(i, k)} .

Then, by Ek ⊑PF k, the Generalized Kraft Inequality (Proposition 4.3.2), the continuous

104



net semimeasure property (4.3), and the definition of Br:

1 ≥
∑

root(k)
M(k) ≥

∑
root(k)

∑
i∈Br∩Ek

M(i)

≥
∑

root(k)

∑
i∈Br∩Ek

2ℓ · diam(i)s

≥
∑

root(k)

∑
i∈Br∩Ek

2ℓ · 2s(−r−1) = |Br ∩ E| · 2ℓ−rs−s.

One may enumerate the elements of Aℓ effectively in R. Build a set Eℓ ⊆ Aℓ of
indices of mutually-incomparable net elements by only enumerating into Eℓ those newly
enumerated indices of Aℓ incomparable to all indices already enumerated into Eℓ. For any
i ∈ Eℓ with diam(i) > 0, (4.7) implies that there exists some natural number r ≥ ⌈ℓ/s⌉
with 2−r−1 < diam(i) ≤ 2−r, so i ∈ Br. Using the two-part description of i ∈ Br ∩ Eℓ, we
see by the claim above that:

KR(i) ≤ rs+ s− ℓ+O(log r) +O(log ℓ).

Fix x ∈ X. By assumption, M s-succeeds on x, so x has an N -name intersecting Aℓ

for arbitrary large ℓ ∈ ω. If that name settles on a net element of diameter zero, then
Gr(x) = O(1) for sufficiently large r. Otherwise, for every ℓ ∈ ω, there exists iℓ ∈ Eℓ

with diam(iℓ) > 0 such that x ∈ ι(iℓ), giving,

lim inf
r→∞

Gr(x)
r

≤ lim inf
r→∞

rs+ s− ℓ+O(log r) +O(log ℓ)
r

≤ s.

Taking a supremum over all x ∈ X, we finish the proof in this direction.
In the other direction, take rationals s > s′ > s′′ > γ(X). Put

A :=
{
i ∈ ω : KR(i) ≤ −s′ · log diam(i)

}
,

where log(0) is defined to be −∞. This set is c.e. in R. Define the map,

M(i) :=
∑
j∈A

in(j,i)

diam(j)s′
.

In words, the sum defining M considers all net elements which are subsets of the i-th
net element and which have bounded complexity. This map is well-defined (and, in fact,
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satisfies the bounding property (4.3)) by the Kraft Inequality 1.6.4:

∑
root(k)

M(k) ≤
∑
j∈A

diam(j)s′ ≤
∑

j

2−KR(j) ≤ 1.

We claim M is an R-lower-semicomputable continuous net semimeasure.
Lower-semicomputability is clear from having computable access to the containment

relation and diam, as well as by KR(i) being upper-semicomputable in R. The continuous
net semimeasure property (4.2) holds since M satisfies the recursive rule:

M(i) =
∑

pred(i,j)
M(j) +

diam(i)s′ if i ∈ A

0 otherwise

≥
∑

pred(i,j)
M(j).

This follows from the net axiom (N4). So, M ∈ M. And for any i ∈ A,

M(i) ≥ diam(i)s′
. (4.8)

Fix x ∈ X. By assumption, there are infinitely many r ∈ ω for which Gr(x) ≤ rs′′. For
each such r, fix ir ∈ ω such that x ∈ ι(ir), diam(ir) ≤ 2−r and KR(ir) ≤ rs′′. If any
diam(ir) = 0, we are done. Otherwise, these conditions imply ir ∈ A, so by (4.8),

M(ir)
diam(ir)s

≥ diam(ir)s′

diam(ir)s
= diam(ir)s′−s ≥ 2r(s−s′) → ∞ as r → ∞.

So M s-succeeds on x, and so too does M. Therefore, M s-succeeds on all of X.

Corollary 4.5.6. For any represented net space (Ω,N ,R) and subset X ⊆ Ω,

dimloc m(X) = dimloc M(X).

Therefore, the universal semimeasures in both the discrete and continuous senses produce
the same local dimension notion over Ω.

Proof. By Theorem 4.5.5, it suffices to show that dimloc m(X) = γ(X). This latter
equality holds even over mesh spaces.

Suppose γ(X) < s ∈ Q. Fix x ∈ X. Then there exists a strictly-increasing sequence
(rn)n of natural numbers and a sequence of net elements (Nn)n ⊆ N satisfying x ∈ Nn,
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diam(Nn) ≤ 2−rn , and KR(Nn) ≤ s · rn for all n ∈ ω. Then, (in)n := (ι−1(Nn))n ∈ R(x)
is a N -name of x satisfying,

− KR(in)
log diam(in) ≤ s · rn

rn

= s,

where the left-hand side is defined as 0 when diam(in) = 0. Thus, by the Coding
Theorem 1.8.2 relativized to R, we have dimloc m(x) ≤ s. As x ∈ X was arbitrary,
dimloc m(X) ≤ s.

In the other direction, suppose dimloc m(X) < s′ < s ∈ Q. Fix x ∈ X. Then,
dimloc m(x) < s′ as well. Again by the Coding Theorem 1.8.2 relativized to R, there
exists an N -name (ir)r ∈ R(x) satisfying for each r ∈ ω:

− KR(ir)
log diam(ir)

≤ s.

Passing to a subsequence (rn)n such that diam(irn) ≤ 2−n, which is possible by diam(ir) →
0, we see:

γ(x) ≤ lim inf
n→∞

K(irn)
− log diam(irn) ≤ s.

Thus, γ(X) ≤ s as well.

4.5.4 Effective Hausdorff Dimension

Let us now present the effectivized Hausdorff approach for effective dimension over a mesh
space. See [46] for a comparison to the same notion for metric spaces with computable
nice covers, or [41, 52] for that on Cantor space.

We start by generalizing two of the weights found in Section 1.5 to collections of mesh
elements.

Definition 4.5.7. Fix a premeasure ρ and a mesh N on Ω. If V is a collection of indices
of elements in N , define the

• Direct ρ-weight of V : DWρ(V) := ∑
i∈V ρ(ι(i)), and

• Prefix ρ-weight of V : PWρ(V) := sup {DWρ(E) : E ⊑PF V}.

We may similarly extend some of the test notions as to those defined in Section 1.5 but
now for mesh spaces. As before, we restrict the premeasure to be upper-semicomputable
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in the fixed ω-presentation R of N .

Definition 4.5.8. Fix an R-upper-semicomputable premeasure ρ on the mesh N .
Suppose U = (Un)n∈ω denotes a uniformly-R-c.e. sequence of collections of (indices of)
mesh elements from N . Then, define U to be:

• a Martin-Löf-R-ρ-test if DWρ(Un) ≤ 2−n for all n ∈ ω; and

• a strong Martin-Löf-R-ρ-test: if PWρ(Un) ≤ 2−n for all n ∈ ω.

And suppose V denotes an R-c.e. collection of (indices of) mesh elements from N . Then,
define V to be:

• a Solovay-R-ρ-test if DWρ(V) < +∞; and

• a strong Solovay-R-ρ-test if V if PWρ(V) < +∞.

Similarly to the case of Cantor space, we say that a point x ∈ Ω is covered by a test
if x has an N -name which is covered by the test.

Definition 4.5.9. For any R-upper-semicomputable premeasure ρ on the mesh N and
any subset X ⊆ Ω,

• Let U = (Un)n∈ω be a (strong) ML-R-ρ-test. Then U is said to cover X if for each
x ∈ X, there exists an N -name (in)n ∈ R(x) of x such that in ∈ ⋂

n Un. Otherwise,
X is said to have passed U .

• Let V be a (strong) Solovay-R-ρ-test. Then V is said to cover X if for all x ∈ X,
there exists an N -name (in)n ∈ R(x) of x such that ir ∈ V for infinitely many
r ∈ ω. Otherwise, X is said to have passed V .

A point x ∈ X is ML-R-ρ-random if no ML-R-ρ-test covers x. Analogous definitions
apply for all ML-type and Solovay-type tests. And as is the case over Cantor space, there
exists a universal ML-s-test for each left-c.e. s > 0.

Proposition 4.5.10. For each left-c.e. s > 0, there exists a universal ML-R-s-test.
That is, there exists an ML-R-s-test U s = {U s

n}n such that for any X ⊆ Ω,

X is covered by some ML-R-s-test ⇐⇒ U s covers X.
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Proof. It is possible to compute from R an enumeration (U (k))k of all ML-R-s-tests.
This essentially follows from s-m-n Theorem (see Theorem 1.5.5 of [60]). Intuitively, an
enumeration of all R-c.e. sets can be converted into an enumeration of all ML-R-s-tests
by only enumerating those strings into the test which keep the direct s-weight of the
corresponding layer in the test below the required bound.

For each n, define

U s
n :=

⋃
k

U
(k)
n+k+1.

It is clear that U s := (U s
n)n is a uniformly R-c.e. sequence. It further holds that U s is an

ML-R-s-test since for each n ∈ ω:

DWs(U s
n) ≤

∞∑
k=0

DWs(U (k)
n+k+1) ≤

∞∑
k=0

2−(n+k+1) ≤ 2−n.

It is straightforward to verify that U s is indeed universal among all ML-R-s-tests.

Definition 4.5.11. The effective Hausdorff dimension (with respect to (Ω,N ,R)) of a
subset X ⊆ Ω is defined as:

effdim(X) = inf {s ≥ 0 : U s covers X} .

For a singular point x ∈ Ω, define its effective Hausdorff dimension (with respect to
(Ω,N ,R)) as:

effdim(x) := inf {s > 0 : x is not ML-R-s-random} .

We may use the existence of a universal ML-R-s-test to establish the Pointwise
Stability of effective Hausdorff dimension restricted to a mesh.

Proposition 4.5.12 (Pointwise Stability). For any represented mesh space (Ω,N ,R)
and X ⊆ Ω,

effdim(X) = sup
x∈X

effdim(x).

Proof. That effdim(X) ≥ supx∈X effdim(x) is clear since any ML-R-s-test covering X
will also cover {x} for each x ∈ X.

In the reverse direction, assume s > supx∈X effdim(x). Then, each x ∈ X is covered
by some ML-R-s-test. In particular, each x ∈ X is covered by the universal ML-R-s-test,
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U s. So, U s covers X, meaning s ≥ effdim(X).

This immediately implies the total stability of effective Hausdorff dimension restricted
to a mesh: i.e., if X = ⋃

i∈I Xi for some collection of subsets Xi ⊆ Ω indexed by I, then
effdim(X) = supi∈I effdim(Xi).

There is a natural identification between the effectivized Hausdorff dimension restricted
to a net and the lower incompressibility ratio γ over a net space.

Theorem 4.5.13. For any represented net space (Ω,N ,R) and subset X ⊆ Ω,

effdim(X) = γ(X).

Proof. Let us start by showing effdim(X) ≥ γ(X). We appeal to Theorem 4.5.5 and
instead prove effdim(X) ≥ dimloc M(X). To that end, take any rationals s > s′ >

effdim(X), and let X being ML-R-s-null be witnessed by some ML-R-s-test U = (Un)n.
Define the map M : ω → R:

M(i) := 1
2
∑

n

n
∑

j∈Un

in(j,i)

diam(j)s.

Claim 1: M is a lower-semicomputable continuous net semimeasure in R.

Proof. M is R-lower-semicomputable as each Un is R-c.e. and the containment relation
in and diameter function diam are computable from R. Partial sums can approximate
M(N) from below computably in R. We make use of (N4) to check the continuous net
semimeasure properties (4.2) and (4.3). Across the roots, we see

∑
root(k)

M(k) = 1
2
∑

n

n
∑

j∈Un

diam(j)s ≤ 1
2
∑

n

DWs(Un) ≤
∑

n

n · 2−(n+1) = 1.

And for i ∈ ω, the map satisfies the recursive rule:

M(i) =
∑

pred(i,j)
M(j) +


1
2n · diam(i)s if i ∈ Un

0 otherwise

≥
∑

pred(i,j)
M(j).

Claim 2: M s-succeeds on X.
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Proof. Since U covers X, for each x ∈ X and n ∈ ω, there exists in ∈ Un such that
x ∈ ι(in). Note that diam(in)s ≤ 2−n since U is an ML-R-s-test. Therefore, (in)n ∈ R(x)
is an N -name of x. If ever diam(in) = 0, then we are done. Otherwise, the name satisfies:

lim sup
n

M(in)
diam(in)s

≥ lim sup
n

1
2n · diam(in)s

diam(in)s
= lim sup

n

n

2 = ∞.

Thus, M s-succeeds on X.

This suffices to show that s ≥ γ(x).
In the other direction, take some rationals s > s′ > s′′ > γ(X). There is a uniform

algorithm in R to enumerate the following family of sets, where n ∈ ω,

Un :=
{
i ∈ ω : KR(i) ≤ −s · log diam(i) − n

}
,

where log(0) is defined to be −∞.
We claim that f is an ML-R-s-test covering X. First, the Kraft Inequality 1.6.4

implies that for each n,

∑
i∈Un

diam(i)s ≤
∑

i∈Un

2−KR(i)−n ≤ 2−n.

All that remains is to show that U covers X. Fix x ∈ X and n ∈ ω. Take r0 ∈ ω to be
sufficiently large such that for all r ≥ r0,

(s− s′)r > n.

Then, by γ(X) < s′′ < s′, we have that there are infinitely many r ≥ r0 for which
KR

r (x) < s′r. For each such r, by the definition of KR
r , there exists a net element of

index ir ∈ ω such that x ∈ ι(ir), diam(ir) ≤ 2−r, and KR(i) < s′r; thus,

KR(ir) < s′r < sr − n ≤ −s · log diam(ir) − n.

That is, ir ∈ Un. Thus, X ⊆ ⋂
n

⋃
i∈Un

ι(i). And so, s ≥ effdim(X).

4.5.5 Local Dimension of Outer Measures

Again inspired by the Billingsley-type definition on the local dimension of an outer
measure as in Falconer [12], we define the local net dimension of an outer measure on a
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computable net space.

Definition 4.5.14. If µ is an outer measure on computable mesh space (Ω, d,N ,R, α),
the (lower) local net dimension of x ∈ Ω under µ is:

dimloc µ(x) = inf
{

lim inf
n→∞

log µ(ι(in))
log diam(in) : (in)n ∈ R(x)

}
.

And if X ⊆ Ω, then the (lower) local net dimension of µ on X is:

dimloc µ(X) = sup
x∈X

dimloc µ(x).

Proposition 4.5.15. For any computable grate space (Ω, d,N ,R, α) with layered-disjoint
grate N , and any subset X ⊆ Ω,

dimloc κ(X) = dimloc m(X).

Proof. This holds by a short algebraic argument. Given N ∈ N , Proposition 4.4.17
implies:

− logκ(N) = K(N) = KN (N) ± o (− log diamd(N)) = − logµ(N) ± o (− log diamd(N)) ,

and so, for any X ⊆ Ω,

dimloc κ(X) = sup
x∈X

inf
(in)n∈R(x)

lim inf
n→∞

logκ(ι(in))
log diam(in)

= sup
x∈X

inf
(in)n∈R(x)

lim inf
n→∞

logµ(ι(in)) ± o (− log diam(in))
log diam(in)

= sup
x∈X

inf
(in)n∈R(x)

lim inf
n→∞

log m(in)
log diam(in)

= dimloc m(X).

Computable grate spaces with layered-disjoint grates thus offer the most asymptotic
coincidences. In particular, over these spaces, every form of algorithmic complexity
presented in this section induces the same effective dimension notion. Note that Propo-
sition 4.5.15 holds even when κ is replaced by any globally or locally optimal outer
measure, including θ, µ, Q, and R from the previous section.
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4.5.6 Summary of Asymptotic Coincidences

To summarize, we have the following theorem stating the various equalities between
effective measures of information density introduced in this section over net spaces and
grate spaces.

Theorem 4.5.16. For any represented net space (Ω,N ,R) and any subset X ⊆ Ω,

dimloc M(X) = dimloc m(X) = cdim(X) = γ(X) = effdim(X).

Moreover, if (Ω, d,N ,R, α) is a computable grate space with a layered-disjoint grate,
these quantities further coincide with η(X) and dimloc κ(X).

These collected results respond to some open questions posed in [33]. In particular,
we have developed Billingsley-type algorithmic dimensions over mesh spaces via mesh
semimeasures, and shown how these dimensions coincide over net spaces and grate
spaces. Second, they asked whether–over separable metric spaces–one could charac-
terize algorithmic dimension via gales. In light of Proposition 4.4.18, we have indeed
shown how algorithmic dimension is equivalently characterized from the perspectives of
incompressibility, typicality, and unpredictability under some basic assumptions.

4.6 Point-to-Set Principles on Net Spaces
Recall the discussion of Section 1.12. It is already well known for Euclidean space that
Hausdorff dimension has a pointwise, algorithmic characterization, as originally shown in
2017 by J. Lutz and N. Lutz [34]. Even more recently, P. Lutz and J. Miller succeeded at
refining the Point-to-Set Principle for the s-dimensional Hausdorff outer measures [41].
We aim to establish the same point-to-set principles as in Theorem 1.12.1, Theorem 1.12.3,
and Corollary 1.12.4 but for net spaces.

4.6.1 The Point-to-Set Principle for Hausdorff Dimension

The standard PTS for Hausdorff dimension holds when we restrict Hausdorff dimension
to a fixed net. We call this the Point-to-Net Principle.

Theorem 4.6.1 (“Point-to-Net Principle” for Restricted Hausdorff Dimension). For any
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net space (Ω,N ) and any X ⊆ Ω,

dimN (X) = inf
R

sup
x∈X

effdimR(x),

where the infimum on R ranges over all ω-presentations of N .

Proof. By Pointwise Stability 4.5.12, it suffices to check that

dimN (X) = inf
R

effdimR(X).

It is clear that dimN (X) ≤ infR effdimR(X), since the left-hand side has no com-
putability restriction on the allowed covers.

We will take R to be an ω-presentation of N powerful enough to witness s > dimN (X).
That is, for each dimN (X) < s ∈ Q, there exists a sequence (U s

n)n∈ω where each U s
n ⊆ ω

satisfies DWs(U s
n) ≤ 2−n and (U s

n)n covers X in the sense of an ML-type test. Then we
require R ≥T

⊕ {(U s
n)n : dimN (X) < s ∈ Q}.

We claim that such an ω-presentation R witnesses dimN (X) = effdimR(X). By
definition, if s > dimN (X), then X is covered by (U s

n)n, which is an ML-R-s-test.
Therefore, effdimR(X) ≤ s as well. So, by definition, effdimR(X) ≤ dimN (X).

Moreover, if the metric space has a convenient family of nets that can compare to each
s-dimensional Hausdorff premeasure, then the net dimension and Hausdorff dimension of
X should agree.

Theorem 4.6.2. Let (Ω, d) be a metric space, and suppose that for any s ≥ 0, there exists
a net N s on (Ω, d) and corresponding net premeasure ρs comparable to the s-dimensional
premeasure ρs. Then, for any X ⊆ Ω,

dimH X = dimnet(X) = inf
s≥0

dimN s(X) = inf
s≥0

inf
Rs

sup
x∈X

effdimRs(x),

where for each s ≥ 0, the infimum on Rs ranges over all ω-presentations of N s. The
same conclusion holds if for any s ≥ 0, there exists a net N s such that ρs ↾ Ns ≍ ρs.

In particular, if a given net N satisfies ρs ↾ N ≍ ρs for every s ≥ 0, then for any
X ⊆ Ω:

dimH X = dimnet(X) = dimN (X) = inf
R

sup
x∈X

effdimR(x),

where R can be any ω-presentation of N .
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Proof. It is clear that dimH X ≤ dimnet(X), as the collection of covers considered for
net dimension are all permitted when computing Hausdorff dimension. For the other
direction, take any rational s > dimH X. Take N s and ρs as guaranteed for this s. By
definition, Hs(X) = 0. By the assumption that ρs ≍ ρs, it follows that Hρs↾N s(X) = 0,
as well. So, by definition, s ≥ dimN s(X) ≥ dimnet(X).

The final equality in the claim follows from the Point-to-Net Principle 4.6.1.

Now, Theorems 4.5.16 and 4.6.1 combine to give the usual Point-to-Set Principle.

Corollary 4.6.3. Let (Ω, d,N ,R, α) be a computable grate space where N is layered-
disjoint and satisfies ρs ↾ N ≍ ρs for every s ≥ 0. Then, for any X ⊆ Ω,

dimH X = min
B∈2ω

sup
x∈X

dimB(x),

where dim is any of the following effective dimension notions: dimloc M, dimloc m,
dimloc κ, cdim, γ, η, or effdim.

4.6.2 Point-to-Set Principles for Hausdorff Measures

We now confirm that the point-to-set principles regarding the family of s-dimensional
Hausdorff outer measures by P. Lutz and J. Miller extend to any net space (Ω,N ).

First, though, we should extend the complexity-characterizations of partial randomness
which hold over Cantor space in Theorem 1.11.2. Once again, the limiting behavior of
the prefix discrepancy characterizes Martin-Löf and Solovay randomness, whereas the
limiting behavior of the a priori discrepancy characterizes their strong forms.

Theorem 4.6.4. Let s be left-c.e. and (Ω,N ,R) be a represented net space. Then, for
any point x ∈ Ω,

(i) x is ML-R-s-random if and only if ∆PR
s (in) ≥ c,

(ii) x is Solovay-R-s-random if and only if ∆PR
s (in) → +∞,

(iii) x is strong ML-R-s-random if and only if ∆MR
s (in) ≥ c,

(iv) x is strong Solovay-R-s-random if and only if ∆MR
s (in) → +∞,

for each N -name (in)n ∈ R(x) and some constant c which may depend on (in)n.

To begin, consider the following lemma relevant to strong Solovay randomness.
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Lemma 4.6.5. Let s be left-c.e., R an ω-presentation of the net N , and x ∈ Ω.

(i) Suppose lim infn ∆MR
s (in) ≤ c for some N -name (in)n ∈ R(x) and constant c.

Then there exists a c.e. strong Solovay-R-s-test V covering x with PWs(V) ≤ 2c.

(ii) Suppose (Vk)k∈ω is a uniformly R-c.e. sequence of strong Solovay-R-s-tests and
{ck}k∈ω is an R-computable sequence of integers such that for each k: PWs(Vk) ≤
2ck . Then for any x covered by all Vk using a common N -name (in)n ∈ R(x), and
for each k ∈ ω,

lim inf
n→∞

∆MR
s (in) ≤+ ck + k,

where the additive constant does not depend on x nor k.

Proof. (i) Define

V :=
{
i ∈ ω : ∆MR

s (i) < c
}
.

Clearly, V covering x is witnessed by the N -name (in)n of x from the assumption.
Now, take any E ⊑PF V . By the definition of V and by Proposition 4.3.3,

DWs(E) =
∑
i∈E

diam(i)s ≤ 2c
∑
i∈E

2− KMR(i) = 2c
∑
i∈E

M(i) ≤ 2c.

So, V is a strong Solovay-R-s-test covering x with PWs(V) ≤ 2c.

(ii) For each k ∈ ω define the map Mk : ω → [0, 1] (and M : ω → [0, 1]) as follows:

Mk(i) := 1
2ck+1 PWs({j ∈ Vk : in(j, i)}); M(i) :=

∑
k∈ω

Mk(i)
2k+1 .

We claim that each Mk–as well as M–is an R-lower-semicomputable continuous
net semimeasure. Lower-semicomputability is clear since one may approximate the
prefix s-weight from below by computing direct s-weights on prefix-free subsets. The
sum of any Mk across the roots of the net cannot exceed 1

2ck+1 PWs(Vk) ≤ 2ck+1

2ck+1 = 1.
And for any i and E ⊑PF i,

∑
e∈E

Mk(e) = 1
2ck+1

∑
e∈E

PWs({j ∈ Vk : in(j, e)})

= 1
2ck+1 PWs

(⋃
e∈E

{j ∈ Vk : in(j, e)}
)
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≤ 1
2ck+1 PWs({j ∈ Vk : in(j, i)})

= Mk(i).

The same inequalities extend to M . Furthermore, for any i ∈ Vk, we have

Mk(i) = 1
2ck+1 PWs({j ∈ Vk : in(j, i)}) ≥ 1

2ck+1 DWs({i}) = 1
2ck+1 diam(i)s.

Let x ∈ Ω be covered by all Vk as witnessed by a fixed N -name (in)n ∈ R(x). We
conclude that for each k, there are infinitely many n ∈ ω for which

KMR(in) ≤+ − logM(in) ≤ −s log diam(in) + (ck + 1) + (k + 1).

Proof of Theorem 4.6.4. (i) First assume that x is not ML-R-s-random, hence covered
by some ML-R-s-test U = (Un)n. For each n ∈ ω, define the map mn : ω → R:

mn(i) :=


n
2 diam(i)s if i ∈ Un

0 otherwise,

as well as the map m : ω → R:

m(i) :=
∑
n∈ω

mn(i).

Each mn is lower-semicomputable in R via R-computable partial sums using
the enumerations of each Un and by approximating s from below. So too then
is m lower-semicomputable in R. Moreover, all of these maps are discrete net
semimeasures, which follows from the following bound:

∑
i∈ω

m(i) =
∑
i∈ω

∑
n∈ω

mn(i) =
∑
n∈ω

n

2
∑

i∈Un

diam(i)s =
∑
n∈ω

n

2 DWs(Un) ≤
∑
n∈ω

n · 2−(n+1) = 1.

By the Coding Theorem 1.8.2 relativized to R, there exists constant C such that
m(i) ≤ C ·2−KR(i) for almost every i ∈ ω. Take an N -name (in)n ∈ R(x) witnessing
that U covers x. Fixing n ≥ ⌈C⌉ + 1,

KR(in) ≤ − log
(
m(in)
C

)
≤ − log

(
n

2C diam(in)s
)

= −s log diam(in) − log
(
n

2C

)
,
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so lim infn→∞ ∆ PR
s (in) = −∞.

In the other direction, define for each n ∈ ω the R-c.e. set:

Un :=
{
i ∈ ω : ∆ PR

s (i) ≤ −n
}
.

We assume that there is some N -name (in)n ∈ R(x) for which no constant c
satisfies ∆ PR

s (in) ≥ c. We may refine (in)n that to an N -name of x such that
∆ PR

s (in) ≤ −n. That is, U = (Un)n covers x. We confirm that U is an ML-R-s-test
by bounding the direct s-weights and applying the Kraft Inequality 1.6.4:

DWs(Un) =
∑

i∈Un

diam(i)s ≤
∑

i∈Un

2−KR(i)−n = 2−n
∑

i

2−KR(i) ≤ 2−n.

Thus, x is not ML-R-s-random.

(ii) Let x not being Solovay-R-s-random be witnessed by the Solovay-R-s-test V in N .
Build an R-c.e. sequence of axioms A := {⟨i, ⌈−s · log diam(i)⌉⟩}i∈V with

∑
i∈V

2−⌈−s·log diam(i)⌉ ≤ DWs(V) < +∞.

A standard result attributed to Kraft and Chaitin implies one may demonstrate
KR(i) < −s · log diam(i) + c effectively in R for some c and for each i ∈ V . This is
done by producing a prefix oracle machine which, given R as the oracle, produces
i using a codeword of length approximately −s · log diam(i) for all such pairs in
A [29]. Take (in)n ∈ R(x) to be an N -name of x witnessing that V covers x. Then,
for infinitely many n ∈ ω, we have in ∈ V , so

lim inf
n→∞

∆PR
s (in) < c.

In the other direction, we assume that there is an N -name (in)n ∈ R(x) and
constant c ∈ ω such that ∆PR

s (in) < c for infinitely many n ∈ ω. Then

V :=
{
i ∈ ω : ∆PR

s (in) < c
}

is an R-c.e. set which covers x via (in)n. We confirm that V is a Solovay-R-s-test
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using the Kraft Inequality 1.6.4:

DWs(V) =
∑
i∈V

diam(i)s ≤
∑
i∈V

2c−KR(i) ≤ 2c < +∞.

(iii) Suppose there is a strong ML-R-s-test U = (Un)n covering x. Note that for each
k ∈ ω, we have Vk := ⋃

n>2k Uk is a strong Solovay-R-s-test covering x and with
prefix s-weight:

PWs(Vk) ≤
∑

n>2k

PWs(Un) ≤
∑

n>2k

2−n = 2−2k.

And (Vk)k is uniformly R-c.e., so by Lemma 4.6.5 (ii), there exists an N -name
(in)n ∈ R(x) such that for each k ∈ ω,

lim inf
n

∆MR
s (in) ≤+ −2k + k = −k → −∞.

In the other direction, we suppose there is an N -name (in)n ∈ R(x) for which
lim infn ∆MR

s (in) = −∞. Fixing k ∈ ω, we have lim infn ∆MR
s (in) ≤ −k, so

by Lemma 4.6.5 (i), there is a strong Solovay-R-s-test Vk covering x and with
PWs(Vk) ≤ 2−k. The proof of Lemma 4.6.5 (i) also shows that this sequence (Vk)k

is uniformly R-c.e., so forms a strong ML-R-s-test covering x.

(iv) Suppose there is a strong Solovay-R-s-test V covering x. Take c ∈ Z sufficiently
large so that PWs(V) ≤ 2c. By Lemma 4.6.5 (ii), lim infn ∆MR

s (in) ≤+ c for
some N -name (in)n ∈ R(x). In the other direction, if there were some c and
N -name (in)n ∈ R(x) for which infinitely many n ∈ ω satisfy ∆MR

s (in) ≤ c, then
Lemma 4.6.5 (i) implies there exists a strong Solovay-R-s-test V covering x.

The following lemma helps to relate the s-dimensional Hausdorff outer measure of a
set restricted to a net to the existence of strong Solovay-s-tests in that net covering the
set.

Lemma 4.6.6. Let s > 0 be left-c.e., R an ω-presentation of the net N , and x ∈ Ω.

(i) Suppose V is a strong Solovay-R-s-test covering X. Then (H ↾ N )s(X) ≤ PWs(V).

(ii) Suppose (H ↾ N )s(X) < +∞. Then for any ε > 0, there exists an oracle B ≥T R

and a strong Solovay-B-s-test V covering X with PWs(V) ≤ (H ↾ N )s(X) + ε.
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Proof. (i) It is possible to build a sequence U = (Un)n of prefix-free subsets of V
satisfying:

• For each i ∈ Un, we have diam(i) ≤ 2−n; and

• For each i ∈ V of diam(i) ≤ 2−n, there exist k ∈ ω and j ∈ Uk with in(i, j).

Take an arbitrary x ∈ X. Notice that if V covers x, then there is an N -name (in)n

of x such that for each k ∈ ω, there exists n ∈ ω such that in ∈ Uk. Therefore,
each Uk covers X by cover elements of diameter no greater than 2−k. And since
Uk ⊑PF V with V being a strong Solovay-R-s-test V , we conclude:

(H ↾ N )s(X) ≤ sup
k∈ω

DWs(Uk) ≤ PWs(V).

(ii) We first build a sequence U = (Un)n subject to a few assumptions: for each n ∈ ω,

(a) Un ⊆ ω is contains the indices of a prefix-free colleciton of net elements;

(b) For each i ∈ Un, we have diam(i) ≤ 2−n;

(c) X ⊆ ⋃
i∈Un

ι(i);

(d) DWs(Un) is minimal to within 2−n among all other U satisfying the above
assumptions;

(e) DWs(Un) is minimal with respect to replacements of any collection of any
indices by any net element non-trivially intersecting all of them, unless that
set has diameter exceeding 2−n; and

(f) For each i ∈ Un+1, there exists j ∈ Un such that in(i, j).

Given a collection U satisfying (a)-(e) yet with (f) failing for some smallest n and
i ∈ Un+1, it has to be that either i non-trivially intersects some elements of Un or
not. If so, one could replace i by these intersecting indices in Un+1. Otherwise,
since Un covers X, i can be safely removed from Un+1 and still cover X. Either
way, the problematic index can be resolved. This can be done for each Un+1 in
succession, starting with any U0 already satisfying (a)-(e).

Define V := ⋃
n>n0 Un for some sufficiently large n0 such that 2−n0 ≤ ε/2. Take

B ∈ 2ω to be an oracle powerful enough to both compute R and U . Then V is
certainly c.e. in B. We claim that V is a strong Solovay-B-s-test covering X.
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Observe that it suffices to bound PWs(V) from above by proving the same bound on
DWs(E) for any finite E ⊑PF V . Fixing such an E , let n = maxi∈E ⌈− log diam(i)⌉.
Then, for each n′ > n, we have E ∩ Un′ = ∅.

We now reduce to the case that E ⊆ Un with little penalty incurred to the direct
s-weight of E . Suppose that i ∈ E \Un. We replace i in E with by all indices j ∈ Un

of net elements non-trivially intersecting with ι(i). By the definition of V , any such
i must have come from Uk for some k < n. This proposed replacement could also
be performed on Uk itself. By (f), the resulting set would still cover X. Now call
E ′

k the result of doing this replacement for any violating i ∈ E ∩ Uk \ Un, and U ′
k

the same but on Uk. By (d),

DWs(E) − DWs(E ′
k) = DWs(Uk) − DWs(U ′

k) ≤ 2−k.

So if E ′ denotes the final version of E after all replacements, we have:

DWs(E) − DWs(E ′) ≤
n−1∑

k=n0+1
2−k < 2−n0 .

Thus, by monotonicity,

DWs(E) < DWs(E ′) + 2−n0 ≤ DWs(Un) + 2−n0

≤ (H ↾ N )s(X) + 2−n + 2−n0

≤ (H ↾ N )s(X) + ε.

We conclude that PWs(V) ≤ (H ↾ N )s(X) + ε.

Now we may prove the finer point-to-set principle for the s-dimensional Hausdorff
outer measures restricted to a net using the limiting behavior of the a priori discrepancy.

Theorem 4.6.7. For any s ≥ 0 and x ∈ Ω,

log(H ↾ N )s(X) =+ inf
R

sup
x∈X

inf
(in)n∈R(x)

lim inf
n→∞

[KMR(in) + s · log2 diam(in)], (4.9)

where the infimum on R ranges over all ω-presentations of N .

Proof. Let us start by showing that log(H ↾ N )s(X) does not exceed the right-hand side
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of (4.9). Fix an ω-presentation R of N and a sufficiently large integer c ≫ 1 such that

sup
x∈X

inf
(in)n∈R(x)

lim inf
n→∞

∆MR
s (in) ≤ c. (4.10)

By Lemma 4.6.5 (i) relativized to R, there exists a strong Solovay-R-s-test V covering
X with PWs(V) ≤ 2c. And so by Lemma 4.6.6 (i), (H ↾ N )s(X) ≤ PWs(V) ≤ 2c.

In the other direction, start by assuming (H ↾ N )s(X) ≤ 2c < +∞ for some integer
c ≫ 1. By Lemma 4.6.6 (ii) applied to ε := 2c > 0 and an ω-presentation R0 of N , there
exists another ω-presentation R ≥T R0 and a strong Solovay-R-s-test V covering X

with PWs(V) ≤ 2c+1. We can even ask that R be strong enough so that: s is left-c.e. in
R, (Vk)k is uniformly R-c.e., and both of these have bounded sizes for their codes in
R. Then, by Lemma 4.6.5 (ii) relativized to R and applied to V0 := V and c0 := c+ 1,
(4.10) holds up to an additive constant independent of x, X, and s.

One interpretation of Theorem 4.6.7 is that the map:

ζ(X) := inf
R

sup
x∈X

inf
(in)n∈R(x)

lim inf
n→∞

[
2KMR(in) · diam(in)s

]

is an outer measure on Ω commensurate with the s-dimensional Hausdorff outer measure
ρs ↾ N restricted to N . Now, under the various characterizations provided by Theo-
rem 4.6.4, it is straightforward to derive a few other characterizations of the s-dimensional
Hausdorff outer measures (restricted to a net) from Theorem 4.6.7.

Corollary 4.6.8. For any s ≥ 0 and X ⊆ Ω,

(i) (H ↾ N )s(X) > 0 if and only if

(∀R an ω-presentation of N )(∃x ∈ X) [x is (strong) ML-R-s-random] .

(ii) (H ↾ N )s(X) < +∞ if and only if there exists an ω-presentation R of N such that

sup
x∈X

inf
(in)n∈R(x)

lim inf
n→∞

[KMR(in) + s · log2 diam(in)] < +∞.

Theorem 4.6.9. For any s ≥ 0 and X ⊆ Ω, it holds that X is not σ-finite with respect
to (H ↾ N )s if and only if

(∀R an ω-presentation of N )(∃x ∈ X) [x is strong Solovay-R-s-random] .
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Proof. We may start by assuming that there is an ω-presentation N for which there is
no element x ∈ X which is strong Solovay-R-s-random. Again by the s-m-n Theorem, it
is possible to uniformly-computably enumerate in R all of the strong Solovay-R-s-tests
(Ve)e∈ω. By assumption, each x ∈ X is covered by some such test, Ve. By Lemma 4.6.6(i),
for each e ∈ ω

(H ↾ N )s({x ∈ Ω : x is covered by Ve}) ≤ PWs(Ve) < +∞.

Thus, X is contained in a union of sets with finite s-dimensional Hausdorff outer measure.
In the other direction, suppose X is σ-finite with respect to (H ↾ N )s. Let (Xk)k∈ω

be a sequence witnessing this: X ⊆ ⋃
k Xk, where (H ↾ N )s(Xk) < +∞ for each

k ∈ ω. By Lemma 4.6.6(ii), for each k ∈ ω, there exists an ω-presentation Rk of N
and a strong Solovay-Rk-s-test Vk covering Xk. And so, letting R be an ω-presentation
which computes all these Rk, we have that each x ∈ X is covered by some strong
Solovay-R-s-test.

Similar to Theorem 4.6.2, if the metric space has a net with net premeasure commen-
surate with the s-dimensional Hausdorff premeasure ρs, all of these results will apply
to the unrestricted s-dimensional Hausdorff outer measure Hs. That is, given s ≥ 0,
suppose there exists a net N and a corresponding net premeasure ρ = Θ(ρs) on N .
(Equivalently, one could ask that ρs ↾ N = Θ(ρs).) Then, for any X ⊆ Ω, the statements
of Lemma 4.6.6, Theorem 4.6.7, Corollary 4.6.8, and Theorem 4.6.9 all apply to Hs in
place of (H ↾ N )s.

4.7 Effective Net Constructions
In [55], Rogers and Davies summarize a number of results on the existence of nets on
certain classes of metric spaces, some of which further admit net measures comparable
with the Hausdorff premeasures.

4.7.1 Revisiting Examples

The first example in [55] is due to A. Besicovitch.

Theorem 4.7.1 (Theorem 49 of [55]). There exists a net on Euclidean space Rm such
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that for any dimension function h, there exists a net premeasure ρ on N satisfying:

Hρh
δ (X) ≤ Hρ

δ(X) ≤ 3m2m(m+1)Hρh
δ (X),

for all δ ∈ (0, 1) and all subsets X ⊆ Rm. Furthermore,

Hρh(X) ≤ Hρ(X) ≤ 3m2m(m+1)Hρh(X),

for all subsets X ⊆ Rm.

The proof for Theorem 4.7.1 simply makes use of the prototypical dyadic net Qm

used in Example 4.1.8: on any Q ∈ Qm
r with side-length 2−r, define the net premeasure

ρ as follows:

ρ(Q) := h(diamd(Q)) = h(
√
m · 2−r); ρ(∅) := 0.

This premeasure is exactly ρ = ρh ↾ Qm.
The second example concerns separable, ultrametric spaces.

Theorem 4.7.2 (Theorem 50 of [55]). Let Ω be a separable ultrametric space with no
isolated points, and let h be any dimension function. Then there is a net on Ω and
corresponding net premeasure ρ such that:

Hρh
δ (X) ≤ Hρ

δ(X) ≤ 2Hρh

δ/2(X),

for all sufficiently small δ > 0 and for all subsets X ⊆ Ω. Furthermore,

Hρh(X) ≤ Hρ(X) ≤ 2Hρh(X),

for all subsets X ⊆ Ω.

The proof of 4.7.2 constructs a net N in the same manner as in Example 4.1.10 for a
fixed dimension function h based on a sequence (di)i converging to zero appropriately
slowly for h; i.e., satisfying for all i ∈ ω:

di+1 >
di

2 , h(di+1) >
h(di)

2 ,

which exists because h is both non-decreasing and continuous on the right. The corre-
sponding net premeasure is simply defined as ρ(N) := h(diamd(N)) for each N ∈ N , or
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ρ(∅) = 0. This premeasure is exactly ρ = ρh ↾ N .

4.7.2 Compact Metric Spaces

Rogers also points to a result by D. Larman in [27] on the existence of nets on “finite-
dimensional,” compact metric spaces. For us, Larman’s notion of finite-dimensional
means being Hs-null for some positive integer s.

Theorem 4.7.3 (Theorem 1 of [27]). Let (Ω, d) be a compact metric space. Then, there
exists a Rogers net N = ⋃∞

n=1 N n being a union of layers N n ⊆ P(Ω) satisfying for each
n ∈ ω:

(i) There exists a finite collection In ⊂ ωn of n-tuples such that N n = {N(i) : i ∈ In}
under an indexing N : ⋃n In → P(Ω), where (i1, ..., in−1, in) ∈ In implies (i1, ..., in−1) ∈
In−1 for any n > 1;

(ii) For all i, j ∈ In, we have N(i) ∩N(j) ̸= ∅ if and only if i = j;

(iii) For each i ∈ In, diamd(N(i)) < 2−n;

(iv) ⋃i∈In N(i) = Ω;

(v) If i ∈ In−1, then

⋃
i⌢in∈In

N(i⌢in) = N(i);

(vi) Each net element of N is an Fσ (i.e., Σ0
2) set.

Moreover, if Ω is also Hs-null for some positive integer s, then this net further satisfies:

(vii) For any X ⊆ Ω with diamd(X) < 2−(n−1) for n > 1, it takes at most a positive
constant K many net elements from N n to cover X.

Lemma 4.7.4. Let (Ω, d) be a compact metric space and fix r > 0. Then, there exists
a finite collection of points {xi ∈ Ω : i ∈ I} which are the centers of mutually-disjoint
r-balls {Br(xi) : i ∈ I} such that their double-radius counterparts cover Ω; i.e.,

⋃
i∈I

B2r(xi) = Ω.
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Lemma 4.7.5. If (Ω, d) is a compact metric space, then the space is Hs-null for some
positive integer s if and only if there exist positive reals K, δ, α with α < 1

2 such that if
d ≤ δ, then at most K many mutually-disjoint, open balls of radius α · d may meet any
given open ball of radius d. In fact, it suffices to fix α = 2−7 and δ = 4.

Larman calls any space satisfying this latter condition a β-space [27].

Proof of Theorem 4.7.3. We first construct the net, which requires some setup.
For n = 0, put r = r0 = 2−5 into Lemma 4.7.4 and obtain the finite collection of

points X0 := {xi : i ∈ I} as guaranteed. Put I0 := I, and consider let x(i) := xi for each
i ∈ I0. Order X0 by following how their indices in I0 are ordered under the standard
order on natural numbers.

We inductively build an order on each successive collection Xn of the centers corre-
sponding to level n ∈ ω as follows. Suppose Xn−1 = {x(i) : i ∈ In−1} has already been
indexed by the finite collection In−1 ⊂ ωn−1 and following the order induced by the
lexicographic-order on In−1 as a subset of ωn−1. I.e., for i, j ∈ In−1,

i < j : ⇐⇒ (∃1 ≤ k ≤ n)[ik <ω jk while (∀1 ≤ ℓ < k)[iℓ = jℓ]].

Now for n > 0, substitute r = rn = 2−(n+5) into Lemma 4.7.4 and obtain the finite
collection of centers Xn := {xi : i ∈ I} as guaranteed. For each i ∈ In−1, denote:

Xn(i) :=

x ∈ Xn :
(∀j ∈ In−1)[j < i =⇒ B2·rn(x) ∩B2·rn−1(x(j)) = ∅]∧

B2·rn(x) ∩B2·rn−1(x(i)) ̸= ∅

 .
That is, collect all those level-n centers whose double-radius balls meet this double-radius
ball yet do not meet any of the previous double-radius balls from level (n− 1). Denote
by In(i) ⊆ I the indices of the centers from Xn(i) under I. We may order In(i) (and,
thus, Xn(i)) by the standard ordering of natural numbers. Doing this across all i ∈ In−1,
we must collect all x ∈ Xn into exactly one such Xn(i), since the lemma guarantees the
double-radius balls cover Ω. If x = xi ∈ Xn(i) for some i ∈ In−1 and i ∈ I, then we let
its index at level n be the n-tuple i⌢i, and call this x(i⌢i) := xi. Collect all such indices
into In ⊂ ωn and order In (and, thus, Xn) lexicographically.

Just as In indexes the collection of centers Xn at level n, it also indexes the collection
of double-radius open balls Bn := {B2·rn(x) : x ∈ Xn} = {B(i) : i ∈ In}, where B(i) :=
B2·rn(x(i)).

We next recall some terminology from [27].
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• A chain is a sequence (Bn)n1
n=n0 of balls where n0 ≤ n1 are natural numbers, each

Bn ∈ Bn, and Bn+1 ∩Bn ̸= ∅ for each n = n0, ..., n1 − 1.

• A point x ∈ Ω is linked to a ball B ∈ Bn if there is a chain (Bn)n1
n=n0 starting at

Bn0 = B and ending at some Bn1 containing x.

• A point x ∈ Ω is strongly linked to a ball B ∈ Bn if x is both linked to B and not
linked to any previous ball in Bn.

Now we may define the n-th layer N n of the net N to be the collection {N(i) : i ∈ In},
where,

N(i) := {x ∈ Ω : x is strongly linked to B(i)} .

The rest of the proof verifies the desired properties as stated in the claim.

(i) This follows directly from the construction.

(ii) No point of Ω may be strongly connected to more than one ball from Bn.

(iii) For any x ∈ N(i) for some i ∈ In0 , take any chain (Bn)n1
n=n0 such that Bn0 = B(i)

and linking to x. Then it is easy to verify that:

d(x, x(i)) ≤ 2−(n+2), so diam(N(i)) < 2−n.

(iv) By choice, ⋃i∈In B(i) = Ω. So any x ∈ Ω is strongly linked to at least one such
B(i) ∈ Bn.

(v) If i ∈ In−1 and x ∈ N(i), then x is not linked to any ball B(j) in Bn−1 preceding
B(i). Then neither is x linked to any open ball B(j⌢jn) ∈ Bn for j⌢jn ∈ In

where j < i. Yet, there is a minimal in ∈ ω satisfying i⌢in ∈ In for which
x is linked to B(i⌢in) ∈ Bn. Thus, ⋃i⌢in∈In N(i⌢in) ⊇ N(i). Conversely, if
x ∈ N(i⌢in), then x is not linked to any j⌢jn ∈ In where j < i. So x ∈ N(i).
Thus, ⋃i⌢in∈In N(i⌢in) ⊆ N(i).

(vi) For i ∈ In, note that N(i) is equal to the set:

{x ∈ Ω : x is linked to B(i)} \ {x ∈ Ω : x is linked to some ball in Bn preceding B(i)} .

Both sets in this difference are open as the unions of open balls, so N(i) is Fσ.
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(vii) Take some x ∈ Ω for which X ⊆ B2−(n−1)(x). Since (Ω, d) is compact and Ω is
Hs-null, and by the choice of the centers in Xn, Lemma 4.7.5 gives:

|{i ∈ In : N(i) ∩X ̸= ∅}| ≤ |{i ∈ In : x(i) ∈ B2−(n−2)(x)}|

≤ |{B2−(n−5)(x(i)) : x(i) ∈ B2−(n−2) and i ∈ In}|

≤ K.

We claim that N := ⋃
n N n is a Rogers net. The axioms (M1), (M2), and (N4′) are

clear. And by (iii) and (iv), Ω is covered by a 2−n-net of open balls for each n ∈ Ω, so we
may conclude (M3) as well. The containment-respecting indexing ι on N can be made
simply by concatenating the orders from each level N n as n increases.

When Ω is both compact and Hs-null for some positive integer s, the net constructed
in Theorem 4.7.3 almost qualifies as a nice cover (N n)∞

n=1 of Ω (satisfying nice cover
axioms (A1), (A2), and (A4)), if not for the possibility for some net elements to be of
zero diameter.

Something stronger may be said for effectively compact metric spaces as defined in
Section 1.4. In order to do so, we establish an effective version of the covering lemma 4.7.4.

Lemma 4.7.6. Let (Ω, d, α) be an effectively compact metric space and fix a positive
rational r. Then, there exists a finite, computable collection of centers {xi : i ∈ I} from
the computable dense subset α whose r-balls {Br(xi) : i ∈ I} are mutually-disjoint while
their 3r-balls cover Ω; i.e.,

⋃
i∈I

B3r(xi) = Ω.

Proof. Given rational r > 0, let k ∈ ω satisfy 2−k ≤ r. By effective compactness, one
may compute a finite subset Λ = {xi}i ⊆ α satisfying Ω = ⋃

xi∈Λ B2−k(xi). We build a set
S by iterating through each xi ∈ Λ: if xi is not yet covered by B2r(xj) for some xj ∈ S

already, then append xi to S. We test this by computably comparing d(xi, xj) < 2r for
each xj ∈ S. This process is finite and computable.

It is immediate that r-balls centered at points in S are mutually-disjoint: all elements
of S are at least 2r apart. Suppose ⋃xj∈S B3r(xj) does not cover Ω: let x ∈ Ω fall outside
this union. By assumption, there exists xi ∈ Λ such that x ∈ B2k(xi) ⊆ Br(xi). Then,
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for each xj ∈ S:

d(xi, xj) ≥ d(x, xj) − d(x, xi) > 3r − r = 2r.

This contradicts the construction of S.

Corollary 4.7.7. Every effectively compact metric space (Ω, d, α) admits a Rogers net
N which is arithmetic and satisfies (i)-(vi) of Theorem 4.7.3. In fact, the elements of
N are all Σ0

2-classes. If the space is also Hs-null for some positive integer s, then N
further satisfies (vii) from Theorem 4.7.3.

Proof. Larman’s construction of N in the proof of Theorem 4.7.3 almost suffices for an
effective result. We make a few modifications and discuss the consequences.

In light of the use of triple-radius balls in the effective Lemma 4.7.6, we instead
define each Bn to collect triple-radius open balls B(i) := B3·rn(x(i)). Moreover, it is not
necessarily computable to detect whether open balls non-trivially intersect. We replace
any condition of non-trivial intersection by a condition comparing the sum of the balls’
radii to the distance between their centers. This affects the definition of Xn: for each
i ∈ In−1, denote:

Xn(i) :=

x ∈ Xn :
(∀j ∈ In−1)[j < i =⇒ d(x, x(j)) ≥ 3rn + 3rn−1]∧

d(x, x(i)) < 3rn + 3rn−1

 .
Furthermore, we modify the definition of a chain to be a sequence (Bn)n1

n=n0 of balls
where n0 ≤ n1, each Bn ∈ Bn, and such that their respective centers xn and xn+1 have
distance less than the sum of their radii:

d(xn, xn+1) < 3rn + 3rn+1.

This numerical comparison of distance versus radii is a weaker condition than checking
for non-trivial intersection between their open balls, yet suffices for the construction.

Properties (i), (ii), (iv), and (v) are clear by the previous construction. We confirm
that (iii) still holds under these modifications. For any x ∈ N(i) with i ∈ In0 , take
any chain (Bn)n1

n=n0 such that Bn0 = B(i) and linking to x. It is clear by the triangle
inequality that:

d(x, x(i)) ≤ 3rn + 2 · 3rn

(
2−1 + 2−2 + · · ·

)
≤ 9rn = 9 · 2−(n+5) =⇒ diamd(N(i)) < 2−n.
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We note that the choice of centers forming each Xn is computable when sourced from
the effective Lemma 4.7.6 and under the new definition of Xn(i).

We next check the definability complexity of each net element as a subset of Ω. Recall
that for each i ∈ In, the set N(i) equals:

{x ∈ Ω : x is linked to B(i)} \ {x ∈ Ω : x is linked to some ball in Bn preceding B(i)} .

Denote by linked(x, i) the predicate that holds if and only if x is linked to B(i). Then
membership in N(i) is equivalent to:

x ∈ N(i) ⇐⇒ linked(x, i) ∧
∧
j<i

¬linked(x, j).

Observe that linked(x, i) is Σ0
1-definable: one may computably enumerate the sequences

of indices of open balls forming a (finite) chain starting at B(i) and eventually containing
x. This follows by pairwise distances between elements of α being computable. Therefore,
membership in N(i) is a Σ0

2-class.
An indexing on this net is arithmetically definable in the codes of its Σ0

2 elements.
And from the indexing, one may compute the inclusion and predecessor relations. Roots
of the net are also computable using the effective lemma. Finally, implicit in the work of
Moschovakis [49] (e.g., Exercise 3C.9), the diameter function is arithmetic, as expressed
by the following formulas:

diamd(N) > δ ⇐⇒ (∃p, q ∈ N ∩ α)[d(p, q) > δ], and

diamd(N) < δ ⇐⇒ ¬(diamd(N) ≥ δ)

⇐⇒ ¬(∀ε > 0)(∃p, q ∈ N ∩ α)[d(p, q) > δ − ε].

Therefore, this is an arithmetically-definable ω-presentation of N .

In the case of compact, Hs-null metric spaces, Theorem 4.7.3 (vii) gives the following
comparability result.

Corollary 4.7.8 (Lemma 1 of [27]). Let Ω be a compact metric space which is Hs-null
for some positive integer s. Take N to be the net constructed in Theorem 4.7.3 on Ω and
K > 0 as in (vii), and let h be a dimension function. Then, there exists a net premeasure
ρ (namely, ρh ↾ N ) on N such that,

Hh
δ (X) ≤ Hρ

δ(X) ≤ K · Hh
δ (X),
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for all δ > 0 and for all subsets X ⊆ Ω. Furthermore,

Hh(X) ≤ Hρ(X) ≤ K · Hh(X),

for all subsets X ⊆ Ω.

In summary, the numerical conditions found in Theorems 4.7.1 and 4.7.2, as well as
Corollary 4.7.8, help to ensure commensurateness and hence comparability between the
guaranteed net premeasures and the s-dimensional Hausdorff outer measures.

4.7.3 Polish Spaces

We now perform a similar investigation for Polish spaces. A metric space is called Polish
if it is both complete and separable, i.e. has a countable dense subset. A standard result
in descriptive set theory states that each non-empty Polish spaces is the continuous image
of Baire space. We are interested in the proof of this result, which utilizes Lusin schemes.
Refer to [22] for more details.

Definition 4.7.9. If Ω is a set and A := (Aσ : σ ∈ ω<ω) is a family of subsets Aσ ⊆ Ω,
we call A a Lusin scheme on Ω if it satisfies for each σ ∈ ω<ω and i, j ∈ ω:

(i) Aσ⌢i ∩ Aσ⌢j ̸= ∅ ⇐⇒ i = j; and

(ii) Aσ⌢i ⊆ Aσ.

Definition 4.7.10. A Lusin scheme A = (Aσ)σ on a metric space (Ω, d) is said to have
vanishing diameter if for each γ ∈ ωω,

lim
n

diamd(Aγ↾n) = 0.

To any Lusin scheme with vanishing diameter we may associate the set FA of representative
addresses, as well as the representation map fA : FA → Ω, where

FA =
{
γ ∈ ωω :

⋂
n

Aγ↾n ̸= ∅
}
, and {fA(γ)} =

⋂
n

Aγ↾n for all γ ∈ FA.

The associated map fA is clearly continuous and injective.

Theorem 4.7.11 (Theorem 7.9 of [22]). If Ω is a Polish space, then there exists a closed
class F ⊆ ωω and a continuous bijection g : F → Ω. Furthermore, if Ω ̸= ∅, then there is
a continuous surjection ĝ : ωω → Ω extending g.
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Proof. The second claim follows from the first claim combined with the standard result
in Proposition 2.8 of [22] on retractions. Fix a compatible, complete metric d ≤ 1 on Ω.
We will construct a Lusin scheme A = (Aσ)σ on Ω further satisfying:

(i) A∅ = Ω;

(ii) Each Aσ is an Fσ (i.e., Σ0
2) class;

(iii) Each Aσ = ⋃
i∈ω Aσ⌢i = ⋃

i∈ω Aσ⌢i; and

(iv) Each diamd(Aσ) ≤ 2− len(σ).

Notice that it suffices to prove that for each Fσ set A ⊆ Ω and ε > 0, that A = ⋃
i∈ω Ai,

where all Ai are mutually-disjoint Fσ sets of diameter diamd(Ai) < ε and whose closures
satisfy Ai ⊆ A.

Since A is Fσ, we may write A = ⋃
i Ci, where each Ci is closed and nested in the

next: Ci ⊆ Ci+1. Then, clearly,

A =
⋃
i

(Ci+1 \ Ci),

giving A as a union of mutually-disjoint, ∆0
2-classes. We might also cover the entire

space Ω = ⋃
n∈ω Un by open sets of bounded diameter diamd(Un) < ε. Putting:

D(i)
n := Un ∩ (Ci+1 \ Ci), E(i)

n := D(i)
n \

 ⋃
n′<n

D
(i)
n′

 ,
we get that each Ci+1 \ Ci = ⋃

n E
(i)
n and:

E
(i)
n ⊆ Ci+1 \ Ci ⊆ Ci+1 = Ci+1 ⊆ A.

Therefore, A = ⋃
i,n E

(i)
n is a union of mutually-disjoint, Fσ sets of diameter diamd(E(i)

n ) ≤
diamd(Un) < ε and whose closures lie in A.

The Lusin scheme A indeed vanishes to zero by the assumption (iv), and thus has
associated to it the set FA and map fA as in Definition 4.7.10. Set F := FA. By the
definition of a Lusin scheme and by the assumptions (i) and (iii), fA(F ) = fA(FA) =
A∅ = Ω. It remains to show that F is closed.

Take γ ∈ ωω and (γk)k ⊆ F such that γk → γ. Notice that for all ε > 0, there exists
n0 ∈ ω such that diamd(Aγ↾n0) < ε, as well as k0 ∈ ω such that for all k ≥ k0, we have
γk ↾ n0 = γ ↾ n0. Therefore, for each ε > 0 and k, k′ ≥ k0, we have d(fA(γk), fA(γk′)) < ε.
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So, (fA(γk))k is a Cauchy sequence. But (Ω, d) is a complete metric space, so the
sequence converges: fA(γk) → y ∈ Ω. But,

y ∈
⋂

n∈ω

Aγ↾n =
⋂

n∈ω

Aγ↾n =⇒ γ ∈ FA = F and fA(γ) = y.

So, F is closed, as desired.

Corollary 4.7.12. Every Polish space admits a Rogers net.

Proof. Take A to be the Lusin scheme constructed in the proof of Theorem 4.7.11. Clearly,
A is countable, and has the property that supersets of Aσ are just those Aρ where ρ
is a prefix of σ, of which there are only finitely many. So A satisfies (M1) and (M2).
Furthermore, any point x in the Polish space has a preimage γ ∈ ωω under the associated
map fA. Notice that for each n ∈ ω, we have x ∈ Aγ↾n, where diamd(Aγ↾n) ≤ 2−n, giving
(M3). Now, by definition, non-empty intersection between two elements of the Lusin
scheme implies comparability with respect to set-inclusion, giving (N4′). Note that we
may index A by making use of a standard enumeration of ω<ω in a prefix-increasing
manner. This indexing will necessarily respect set-inclusion.

Once again, something more can be said about the definability complexity of the net
for computable Polish spaces (under the assumption that they are also compact). Recall
the definition of a computable Polish space from Section 1.4.

Proposition 4.7.13. Every compact, computable Polish space (Ω, d, α) admits an
arithmetically-definable Rogers net satisfying (i)-(iv) in the proof of Theorem 4.7.11. In
fact, all of the elements of this net may be made to be Σ0

2-classes.

Proof. The construction of the Lusin scheme in the proof of Theorem 4.7.11 goes through
with all sets now being of the corresponding lightface Borel complexity. One considers
the recursive rule applied to any Σ0

2-class A, beginning with A∅ = Ω.
The lightface construction expresses A as the countable union ⋃i,n E

(i)
n of mutually-

disjoint, uniformly-Σ0
2-classes of diameter diamd(E(i)

n ) ≤ diamd(Un) < ε and whose
closures lie in A. By the compactness of Ω, it is arithmetic to include only those E(i)

n

which are non-empty. And so, the Lusin scheme A is constructed with its arithmetically-
definable indexing as well.

We have already proved that A qualifies as a Rogers net. The inclusion and predecessor
relations are computable from the indexing. The only root of the net is A∅ = Ω. And, as
in the proof of Corollary 4.7.7, the diameter function on the net A is arithmetic. So, A
has an arithmetically-definable ω-presentation.
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Chapter 5 |
Applications to Geometric Mea-
sure Theory

5.1 Two Approaches to the Combinatorics of Geometric
Measure Theory
We continue the discussion from Section 1.5 on (C, δ, s)-sets and their relation with
Hausdorff dimension. To set up our discussion, let us recall more notation from [43].
For any natural numbers 0 < n < m, the notation G(m,n) refers to the Grassmannian
manifold of all n-dimensional subspaces of Rm. Whenever V ∈ G(m,n), let πV : Rm → V

denote to the orthogonal projection onto V . We take the usual operator norm ||·|| for
linear maps as our metric on G(m,n). Let O(m) denote the m-dimensional orthogonal
group, which consists of all linear maps g : Rm → Rm preserving the inner product in Rm.
Considering the Haar measure θm on O(m), which is an invariant probability measure
uniformly distributed on O(m), then γm,n will denote the unique orthogonally-invariant,
Radon probability measure on G(m,n) arising from this Haar measure. That is, for any
X ⊆ G(m,n) and any fixed V0 ∈ X,

γm,n(X) := θm({g ∈ O(m) : g(V0) ∈ X}).

See Section 3.9 in [43] for more details. One celebrated fact about how Hausdorff
dimension behaves under orthogonal projections onto subspaces of Rm is commonly
known as the Marstrand-Mattila Projection Theorem.

Theorem 5.1.1 (Marstrand-Mattila Projection Theorem; c.f. Theorem 5.8 in [44]). Let
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0 < n < m and X ⊆ Rm be analytic. Then,

dimH πV (X) = min {dimH X,n} for γm,n-almost all V ∈ G(m,n).

The n = 1 case of Theorem 5.1.1–as well as other basic facts about how Hausdorff
dimension behaves under translations, intersections, and Cartesian products–now have
alternative, effective proofs involving an application of the Point-to-Set Principle [38, 39].
Such effective proofs offer the advantage of refining what “almost all” means usually
by finding a sufficiently strong notion of algorithmic randomness which witnesses the
theorem.

In particular, N. Lutz and D. Stull in [39] found an effective proof that the conclusion
of the n = 1 case of the Marstrand-Mattila Projection Theorem still holds under the
alternate hypothesis that dimH X = dimP X. Shortly after, D. Stull extended this
conclusion for a broader class of sets which are said to possess optimal oracles [66],
a condition which has not yet been fully characterized in non-computability theoretic
terms.

However, there was a non-computability theoretic response to the version of the
Marstrand-Mattila Projection Theorem under the condition that Hausdorff and packing
dimensions agree. Namely, T. Orponen in [51] employed combinatorial methods to extend
the result to all 0 < n < m (see Theorem 1.2 in [51]).

He further proved that a weaker conclusion holds for any subset of Rm.

Theorem 5.1.2 (Theorem 1.3 in [51]). Let 0 < n < m and X ⊆ Rm. Then

dimP πV (X) = min {dimH X,n} for γm,n-almost all V ∈ G(m,n).

Two lemmas appear to be essential in Orponen’s proofs of his Theorems 1.2 and 1.3.
The first was the Katz-Tao Lemma (Lemma 1.5.7) claiming the existence of (C, δ, s)-sets
strongly covering subsets of Hausdorff dimension less than s. The other lemma is stated
below. Roughly, it claims that any bounded set appearing at precision δ to have upper
box-counting dimension no more than s can be partitioned into a “bad” part which has
small s-dimensional ∞-content, and a “good” part covered by some (C, δ, s)-set.

Lemma 5.1.3 (Lemma 2.3 in [51]). Let 0 ≤ s ≤ m, δ > 0, C ≥ 1, and X ⊂ Rm be
a bounded subset with N(X, δ) ≤ C · δ−s. Then, for any L ≥ 1, there exists a disjoint
decomposition X = Xgood ⊔Xbad such that

(i) Hs
I (Xbad) ≤ Cm/L, where Cm only depends on m, and
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(ii) Xgood is contained in the δ-neighborhood of a (CL, δ, s)-set.

Our main goal is to prove both these lemmas using incompressibility arguments. It is
already well known that Kolmogorov complexity may be used for proving combinatorial
statements, including in many of the examples from Chapter 6 of [29]. The typical
advantage of an argument based on Kolmogorov complexity is in its ability to identify
objects with a desired property as those which are sufficiently incompressible. And
standard counting arguments show that most objects in a space should be incompressible.
For simplicity, we will present these arguments over Cantor space. So let us tailor the
definition of a (C, δ, s)-set to this setting.

Definition 5.1.4. Fix m ∈ ω and let s > 0, k ∈ ω, and C ≥ 1. A finite set P ⊆ (2<ω)m

is called a (C, 2−k, s)-set if for any τ ∈ (2≤k)m,

|P ∩ JτK| ≤ C ·
(

2− len(τ)

2−k

)s

.

Note that in this setting, if P ⊆ (2k)m is a collection of m-tuple of strings all with
equal length k, then [P ] is the (

√
m · 2−k)-neighborhood about P (regarding P as the set

of all its elements extended by an infinite tail of zeros).
We start with Lemma 1.5.7. The only change we have made to its statement is a

small improvement in the constant term from Ck2 to Ck.

Proposition 5.1.5 (Lemma 1.5.7, restated). Let 0 < s ≤ m and let X ⊆ (2ω)m be a
subset with dimH X < s. Then there exists a constant C ≥ 1 depending only on m, s,
and dimH X such that: for every k ∈ ω, there exists a (Ck, 2−k, s)-set Pk such that the
sequence (BCm·2−k(Pk))k∈ω strongly covers X, where Cm ≥ 1 only depends on m.

Proof. Let B be a Hausdorff oracle for X. Fix Cm =
√
m and take ε ∈ Q>0 such that

dimH X < s − ε. Let us begin with a natural guess for such a strong cover. Start by
defining the set of m-tuples of finite binary strings with bounded prefix complexity
relative to B:

S :=
{
σ ∈ (2<ω)m : KB(σ) < (s− ε) len(σ) +KB(len(σ)) − c

}
,

where the constant c > 0 comes from item (ii) in Chaitin’s Counting Theorem 1.6.5
relativized to B. For a fixed j ∈ ω, denote the slice of S of length j:

Sj := S ∩ (2j)m.
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We claim that the sequence ([Sj])j∈ω must strongly cover X. The Point-to-Set Princi-
ple 1.12.1 guarantees that no x ∈ X may have all but finitely many of its prefixes in S,
or else dimH X ≥ dimB(x) ≥ s− ε. Now, by the Counting Theorem 1.6.5,

|Sj| ≤ 2(s−ε)·j.

Notice too that all elements in Sj are mutually at a distance at least 2−j-apart, but
Sj is not necessarily a (Cj, 2−j, s)-set. Instead, for each j, we let S∗

j represent the the
s-optimal cover of Sj in the sense of Definition 1.5.8. That is, we find an S∗

j consisting of
m-tuples of strings of equal length at most j such that [Sj] ⊆ [S∗

j ] and S∗
j is of minimal

direct s-weight. This minimum exists because we know the direct s-weight of Sj satisfies:

DWs(Sj) =
∑

σ∈Sj

2−s·len(σ) = |Sj| · 2−s·j ≤ 2(s−ε)·j · 2−s·j = 2−ε·j.

This implies our search for S∗
j should not consider strings of length shorter than εj/s

(nor longer than j). Next, for fixed j, k ∈ ω, stratify the elements of the optimal s-cover
S∗

j by their string-length k:

S∗
j,k := S∗

j ∩ (2k)m.

We first claim that each S∗
j,k is a (Cm, 2−k, s)-set. Indeed, for any k ∈ ω and τ ∈ (2≤k)m,

2−s·k ·
∣∣∣S∗

j,k ∩ JτK
∣∣∣ =

∑{
2−s·len(σ) : σ ∈ S∗

j,k ∧ σ ⪰ τ
}

≤ Cm · 2−s·len(τ).

Now for each k ∈ ω, collect into Pk := ⋃
j∈ω S

∗
j,k all the strings across the S∗

j,k. We claim
that each such batch Pk is a (Ck, 2−k, s)-set, where C = Cms/ε. Since S∗

j,k = ∅ whenever
k < εj/s, we may more precisely write:

Pk =
⌊ks/ε⌋⋃

j=0
S∗

j,k.

So, for any τ ∈ (2≤k)m, each S∗
j,k being a (Cm, 2−k, s)-set implies for any k > 0:

|Pk ∩ JτK| ≤
⌊ks/ε⌋∑

j=1

∣∣∣S∗
j,k ∩ JτK

∣∣∣ ≤ Cm · ks
ε

·
(

2− len(τ)

2−k

)s

.

Finally, we show that X is indeed strongly covered by the sequence ([Pk])k∈ω.
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Fix x ∈ X. Since the ([Sj])j strongly cover X, there exist infinitely many j for
which x ∈ [Sj] ⊆ [S∗

j ]. For each such j, there exists a corresponding k ≥ εj/s such
that x ∈ [S∗

j,k] ⊆ [Pk]. Thus, it also holds that there exist infinitely many k for which
x ∈ [Pk].

Now we move on to Lemma 2.3 in [51].

Proposition 5.1.6 (Lemma 2.3 in [51] over Cantor Space). Let s ∈ [0,m], k ∈ ω, C ≥ 1,
and X ⊆ (2ω)m be bounded with N(X, 2−k) ≤ C · 2s·k. Then for any L ≥ 1, there exists a
disjoint decomposition X = Xgood ⊔Xbad such that

(i) Hs
I (Xbad) ≤ Cm/L, where Cm only depends on m, and

(ii) Xgood is contained in the (Cm · 2−k)-neighborhood of a (CL, 2−k, s)-set.

Proof. Let us fix a set of “bad strings”: all those strings of length at most k with an
extension into X and of sufficiently small complexity,

Sbad :=
{
σ ∈ (2≤k)m : [σ] ∩X ̸= ∅ and K(σ) < s · len(σ) − logL

}
.

Take Xbad = [Sbad] to be the open set generated by Sbad. Then, by the Kraft Inequal-
ity 1.6.4,

Hs
I (Xbad) ≤ DWs(Sbad) =

∑
σ∈Sbad

2−s·len(σ) ≤ 1
L

∑
σ∈Sbad

2−K(σ) ≤ 1
L
.

This verifies (i) in the claim. Now, put Xgood := X \ Xbad, and Sgood := Xgood ↾ k ={
σ ∈ (2k)m : [σ] ∩Xgood ̸= ∅

}
. Then,

Xgood ⊆ [Xgood ↾ k] = [Sgood],

i.e., Xgood is contained in the (Cm · 2−k)-neighborhood of Sgood.
It remains to show that Sgood is a (CL, 2−k, s)-set in order to conclude (ii). Fix an

arbitrary τ ∈ (2≤k)m. If τ ∈ Sbad, we would have [τ ] ⊆ Xbad, so Sgood ∩ JτK = ∅. Now
assume that τ ̸∈ Sbad.

By the assumption on N(X, 2−k), we may bound the k-precision prefix complexity of
any x ∈ X from above via a two-part description for x ↾ k. Fixing an enumeration of the
minimal-cardinality c.e. covering of X by 2−k-balls,

K(x ↾ k) ≤ logN(X, 2−k) +O(1) ≤ s · k + logC +O(1).
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The same bound holds for any σ ∈ X ↾ k:

K(σ) ≤ s · len(σ) + logC +O(1). (5.1)

Suppose σ ⪰ τ for σ ∈ X ↾ k. Then by applying both the Coding Theorem 1.8.2 and the
Counting Theorem 1.6.5 (ii) to (5.1), we deduce that τ has at most

2K(σ)−K(τ)+K(k)+O(log len(τ))+O(1)

many descriptions of length K(σ) +O(log len(τ)) +O(1) (each σ ∈ X ↾ k extending τ
computes τ = σ ↾ len(τ)). Now, use that τ ̸∈ Sbad to bound the number of extensions of
τ which are “good”:

|Sgood ∩ JτK| = |{σ ∈ Xgood ↾ k : σ ⪰ τ}|

≤ max
{
2K(σ)−K(τ)+K(k)+O(log len(τ))+O(1) : σ ∈ X ↾ k

}
≤ 2(s·k+log C+O(1))−(s len(τ)−log L)+o(k)

= 2s(k−len(τ))+log C+log L+o(k)

≤ C ′L

(
2− len(τ)

2−k

)s

.

One could adjust the definition of Sbad in the beginning to absorb the extra sub-
exponential terms contributing to C ′, resulting in a collection Sgood which indeed is
a (CL, 2−k, s)-set.

We discuss here how to relate the above proof with that found in [51]. The original
proof forms Xbad as a union of all so-called heavy dyadic cubes, i.e., those dyadic cubes
Q ∈ Qm which contain a sufficiently many smaller sub-cubes Q′ of a fixed side-length
2−k intersecting with X:

⋃{
Q :

∣∣∣{Q′ : ℓ(Q′) = 2−k and Q′ ⊆ Q and Q′ ∩X ̸= ∅
}∣∣∣ ≥ α · L ·

(
ℓ(Q)
2−k

)s}
,

where α is C times a small constant depending on m, and ℓ(Q) denotes the side-length
of Q. Following a strict translation between Euclidean and Cantor spaces (and omitting
relativization to Hausdorff oracles), our proof could have defined Xbad to be the union
of all infinite extensions of heavy strings, i.e., finite strings which may be extended to
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sufficiently many strings of length k whose infinite extension intersects with X:
[{
σ : |{τ ⪰ σ : [τ ] ∩X ̸= ∅ and K(τ) ≤ s · len(τ)}| ≥ α · L ·

(
2− len(σ)

2−k

)s}]
.

The only liberty we have taken in the above translation is to add an incompressibility
condition on τ , making the “bad” set even more restrictive.

In particular, any such heavy string has many long descriptions using each of the length
k strings τ of bounded complexity extending σ and intersecting with X. Together with
len(σ), such a string τ suffices to compute σ by truncation. The Coding Theorem 1.8.2
guarantees that σ having many such long descriptions implies that σ has at least one
short description. In particular, σ having at least α ·L ·2s(k−len(σ))+K(k) many descriptions
⟨τ ∗, len(σ)⟩ of length at most K(τ) +K(len(σ)) +O(1) ≤ sk + o(k) guarantees

K(σ) ≤ (s · k + o(k)) − log
[
α · L · 2s(k−len(σ))+K(k)

]
= s · len(σ) − logL− logα + o(k).

This essentially places σ in the canonical Sbad set from our proof, or its open cylinder [σ]
in the canonical Xbad from our proof. That is, we may view the effective analog of Sbad

as defined by Orponen as a subset of our bad set of strings.
Finally, this result effectivizes for a restricted class of subsets. For instance,

Corollary 5.1.7. Let s ∈ [0,m] ∩ Q, k ∈ ω, C ≥ 1, and X ⊆ (2ω)m be a bounded
Σ0

1-class with N(X, 2−k) ≤ C · 2s·k. Then for any rational L ≥ 1, there exists a disjoint
decomposition X = Xgood ⊔Xbad with Xgood ∈ Π0

1 and Xbad ∈ Σ0
1 such that

(i) Hs
I (Xbad) ≤ Cm/L, where Cm only depends on m, and

(ii) Xgood is contained in the (Cm · 2−k)-neighborhood of a (CL, 2−k, s)-set.

5.2 Projective and Pinned-Distance Sets
In this section we present a simple effective argument which implies results for Hausdorff
dimension in multiple geometric setups. These geometries will include pinned-distance
sets, radial projections, and orthogonal projections.

Definition 5.2.1. Fix 0 ≤ n ≤ m. Given any norm ||·||∗ on Rm, subset X ⊆ Rm, point
z ∈ Rm, and subspace V ∈ G(m,n), denote

• The pinned-distance of X about z by ∆∗
z(X) := {||x− z||∗ : x ∈ X};
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• The radial projection of X about z by P ∗
z (X) :=

{
x−z

||x−z||∗
: x ∈ X

}
;

• The orthogonal projection of X onto V by Π∗
V (X) := {||projV (x)||∗ : x ∈ X};

all with respect to the norm ||·||∗. Simply write ∆z(X), Pz(X), and ΠV (X) when taken
with respect to the standard L2-norm.

We start by recalling a result about pinned-distance sets by D. Stull [67].

Theorem 5.2.2 (Theorem 1 in [67]). Let X ⊆ R2 be an analytic set with Hausdorff
dimension strictly greater than one. Then, for all z ∈ R2 outside a set of Hausdorff
dimension at most one,

dimH (∆zX) ≥ dimH X

4 + 1
2 .

In 2023, I. Altaf, R. Bushling, and B. Wilson proved a related lower-bound for the
Hausdorff dimension of pinned-distance sets [1].

Theorem 5.2.3 (Theorem 1.2 in [1]). For each m ∈ ω, norm ||·||∗ on Rm, point z ∈ Rm,
and subset X ⊆ Rm,

dimH (∆∗
zX) ≥ dimH X − (m− 1).

It is easy to see that under the conditions of Theorem 5.2.2, D. Stull’s lower bound is
stronger than that of Theorem 5.2.3. But the latter applies more generally: there are no
exceptional directions, no dimensionality assumptions on X, nor any specificity to the
L2-norm.

Recall that the Marstrand-Mattila Projection Theorem 5.1.1 bounds from below the
Hausdorff dimension of the orthogonal projection of any analytic set X ⊆ Rm along all
but a γm,n-null set of subspaces from G(m,n). Is there a lower bound for orthogonal
projections which, as in Theorem 5.2.3, applies without any exceptional directions?

To answer this question, we recall a well-known bound for the Hausdorff dimension
of a set which can be decomposed into two components, and provide an effective proof
based on that of Theorem 5.2.3.

Theorem 5.2.4. Let m,n, ℓ ∈ ω and X ⊆ Rm, U ⊆ Rn, and W ⊆ Rℓ. Suppose there is
a locally Lipschitz continuous map f : U ×W → Rm surjective on X. Then

dimH X ≤ dimH U + dimP W.
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Classically, Theorem 5.2.4 is proved by the following sequence of inequalities:

dimH X ≤ dimH f(U ×W ) ≤ dimH(U ×W ) ≤ dimH U + dimP W.

The first inequality follows from monotonicity of Hausdorff dimension under inclusion.
The second inequality follows from monotonicity of Hausdorff dimension under locally
Lipschitz continuous mappings (see Corollary 2.4 in [12]). The final inequality originally
follows from Theorem 3 in [69], which takes the most work to show.

With respect to computability, we may make use of the fact that any (locally) Lipschitz
continuous map is computable in some oracle.

Proof. Let B ≥T f be a Hausdorff oracle for both X and U , as well as a packing oracle
for W . Notice that for any point x ∈ X there exists u ∈ U and w ∈ W such that for any
precision-level r ∈ ω,

KB
r (x) = KB

r (f(u,w)) ≤ KB
r (u,w) + o(r) ≤ KB

r (u) +KB
r (w) + o(r).

Let ε > 0. Since B is a Hausdorff oracle for X, there exists x ∈ X such that dimH X ≤
dimB(x) + ε. Then, by the choice of B and the subadditivity of K:

dimH X − ε ≤ dimB(x)

= lim inf
r→∞

KB
r (x)
r

≤ lim inf
r→∞

KB
r (u) +KB

r (w)
r

≤ dimB(u) + DimB(w)

≤ dimH U + dimP W.

Let us use Theorem 5.2.4 to recreate the proof of Theorem 5.2.3.

Proof of Theorem 5.2.3. Take U = ∆∗
z(X) and W = B∗

1(0) the unit ball in Rm with
respect to the norm ||·||∗. Notice that for any X ∋ x ̸= z, we may express x as follows:

x = ||x− z||∗
x− z

||x− z||∗
+ z.
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Since ||x− z||∗ ∈ ∆∗
z(X) and x−z

||x−z||∗
∈ B∗

1(0), we have found a mapping f : U×W → Rm,
f : (u,w) 7→ uw + z which surjects onto X, is locally Lipschitz continuous, and is
computable in {z} (if x = z, simply return z). Noting that dimH W = dimP W = m− 1,
Theorem 5.2.4 gives:

dimH X ≤ dimH(∆∗
z(X)) + (m− 1).

Proposition 5.2.5. For each m ∈ ω, norm ||·||∗ on Rm, direction e ∈ Sm−1, and subset
X ⊆ Rm,

dimH (Π∗
eX) ≥ dimH X − (m− 1),

where Π∗
e = Π∗

span(e).

Proof. Take U = Π∗
e(X) ⊆ R and W = Oe := {w ∈ Rm : w ⊥ e} ∈ G(m,m − 1) the

orthogonal subspace to e. Notice that for any x ∈ X, we may express x as follows:

x = ||proje(x)||∗ e+ (x− ||proje(x)||∗ e).

Since ||proje(x)||∗ ∈ Π∗
e(X) and x− ||proje(x)||∗ e ∈ Oe, the mapping f : U ×W → Rm,

f : (u,w) 7→ ue+ w surjects onto X, is Lipschitz continuous, and is computable in {e}.
Furthermore, dimH W = dimP W = m− 1. So, by Theorem 5.2.4,

dimH X ≤ dimH(Π∗
e(X)) + (m− 1).

Since there is a bi-Lipschitz continuous map ||·||∗ translating between Π∗
e(X) and

proje(X), Proposition 5.2.5 also gives

dimH (proje(X)) ≥ dimH X − (m− 1).

We obtain another result of this kind for radial projections with a well-known corollary.
We refer [50] to as a standard source.

Proposition 5.2.6. For each m ∈ ω, norm ||·||∗ on Rm, point z ∈ Rm, and subset
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X ⊆ Rm,

dimH (P ∗
zX) ≥ dimH X − 1.

The proof relies on the same geometry as that of Theorem 5.2.3, but with distinct
interpretations for the sets involved in the decomposition.

Proof. Take U = P ∗
z (X) and W = R. Notice that for any X ∋ x ≠ z, we may express x

as follows:

x = x− z

||x− z||∗
· ||x− z||∗ + z.

Since x−z
||x−z||∗

∈ P ∗
z (X) and ||x− z||∗ ∈ R, we have found a mapping f : U × W → Rm,

f : (u,w) 7→ uw + z which surjects onto X, is locally Lipschitz continuous, and is
computable in {z} (if x = z, simply return z). Noting that dimH W = dimP W = 1,
Theorem 5.2.4 gives:

dimH X ≤ dimH(P ∗
z (X)) + 1.

Definition 5.2.7. Let z ∈ Rm. A subset X ⊆ Rm is said to be totally invisible from z

if dimH(Pz(X \ {z})) = 0. Let InvT(X) be the collection of all points from which X is
totally invisible.

Suppose a subset X of Hausdorff dimension greater than one were to be totally invisible
from some point z; then Proposition 5.2.6 would imply dimH(Pz(X \ {z})) ≥ dimH X− 1,
which is positive, a contradiction. This gives the well-known corollary.

Corollary 5.2.8. For any subset X ⊆ Rm with dimH X > 1, we have InvT(X) = ∅.

In summary, Theorem 5.2.4 may be applied to various geometries. Theorem 5.2.3
is an application to pinned-distance sets and the unit ball. Dually, Proposition 5.2.6 is
an application to radial projections and the real line. Likewise, Proposition 5.2.5 is an
application to orthogonal projections and their orthogonal hyperplanes.

5.3 Subsets of Exact Measure
A standard result in geometric measure theory is one by A. Besicovitch regarding for each
closed set in Euclidean space of positive Hs-measure finding a subset whose Hs-measure
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is non-zero and finite [3]. The result was quickly shown to hold more generally for
analytic (or Souslin) sets by R. Davies [9]. Such a result is trivial when s equals the
full dimension of the ambient space, since then Hs is a constant multiple of Lebesgue
measure on that space. Without such a correspondence for smaller values of s, one must
get around the fact that not all sets of infinite Hs-measure are σ-finite for Hs (i.e., are
not the countable union of subsets of finite Hs-measure). Besicovitch circumvents this
by using a net measure constructed over the net of dyadic cubes Qm over Euclidean
space Rm which is comparable to Hs. As discussed in Chapter 4, D. Larman extended
nets and net measures to generic metric spaces [27]. Soon after, C. Rogers and Davies
managed to extend Besicovitch’s result on the existence of finite measure subsets to
compact subsets of a net space under some weak assumptions about the net and net
measure [55], presented below:

Theorem 5.3.1 (Theorem 54 of [55]). Let N be a Rogers net on a metric space (Ω, d),
and ρ be a net premeasure for N . Suppose further that

(i) ρ is finite-valued on N ,

(ii) Each x ∈ Ω is Hρ-finite, and

(iii) If (Fn)n∈∞ is a decreasing sequence of compact subsets of Ω with Hρ (⋃n Fn) = 0,
it holds for each δ > 0 that Hρ

δ(Fn) → 0 as n → ∞.

Then, any compact set F ⊆ Ω with positive Hρ-measure contains a subset of positive,
finite Hρ-measure.

Rogers and Davies used their Increasing Sets Lemma 4.2.7 and stability result 4.2.8
to prove Theorem 5.3.1.

The goal of the present section is to obtain a stronger result for a slightly more
restricted class of nets and net measures. In particular, we will prove a density result
which applies to any finitely-branching, layered-disjoint net with consistently shrinking
diameters across the rank levels and which generates the topology of the full space. And
this result will apply for any Hausdorff net premeasure (i.e., net premeasure induced by
a dimension function in the sense of Section 1.3). We originally obtained the result over
Cantor space by translating Besicovitch’s original argument to the tree-representations of
Π0

1-classes. This proof method then generalized to net spaces with the properties stated
above.
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Definition 5.3.2. Call a net N on a metric space (Ω, d) scaling if there exists a
monotonically-decreasing function d : ω → (0,+∞] with d(r) → 0 as r → ∞ such that
rk(N) = r implies diam(N) = d(r).

Many standard examples of nets are scaling, including the net of dyadic cubes Qm on
Rm with d(r) =

√
m · 2−r, or the net of cylinder sets B on 2ω with d(r) = 2−r. Notice as

well that the Rogers net guaranteed in Theorem 4.7.3 for a compact metric space is also
scaling for d(r) = 2−r.

Definition 5.3.3. For a fixed 0 < b ∈ ω, a net N on a metric space (Ω, d) is b-branching
if N has a single root and each net element has exactly b-many children.

Any b-branching net admits an indexing N = {Nσ : σ ∈ b<ω} respecting the contain-
ment relation, following the addresses in the associated graph G as in Proposition 4.1.5.

A collection of subsets of a topological space Ω is said to be a subbasis of Ω if it
generates the same topology on Ω. So, a net N is a subbasis of (Ω, d) whenever the
topology it generates on Ω is compatible with the topology induced by the metric d.

Let N be a scaling, b-branching, layered-disjoint net on (Ω, d) with Hausdorff net
premeasure ρh based on a dimension function h. Suppose F ⊆ Ω is a non-empty, compact
class.

As F is compact and N is b-branching, the net axioms (M3) and (N4′) guarantee
that we may represent F as the set of paths through a tree TF ⊆ b<ω. That is, it holds
that any x ∈ F may be uniquely associated with the path-wise intersection ⋂

σ∈p Nσ,
where p ∈ [TF ] and Nσ ∈ N is the net element at address σ ∈ b<ω in the associated
graph G.

Using TF , we may represent the set of all non-empty, compact subclasses of F as its
own Π0

1-class PF ⊆ 2ω. To do this, we define the tree TP ⊆ 2<ω coding PF as follows.
Identify 2<ω with ω using a standard computable bijection with the property that for
each n ∈ ω, all strings in b<ω of length n are enumerated before those of length n+ 1.
For any ζ ∈ 2<ω, define ζ ∈ TP if ζ satisfies the following conditions for all σ ∈ b<ω with
ζ(σ) = 1:

(i) ζ(τ) = 1 for all τ ⪯ σ,

(ii) σ ∈ TF ,

(iii) If ζ is defined on all immediate successors σ⌢i where i ∈ {0, ..., b− 1}, then
ζ(σ⌢i) = 1 for at least one choice of i.
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It is straightforward to verify that these conditions make TP a tree. Take any infinite
path Z ∈ [TP ] through TP , and associate to it the set TZ = {σ ∈ b<ω : Z(σ) = 1}. By
condition (i) above, TZ is a tree. By condition (ii), TZ is a sub-tree of TF . And by
condition (iii), TZ is pruned (i.e., each elements of TZ has a proper extension in TZ).
Further associate to Z the compact set EZ ⊆ Ω defined by

x ∈ EZ ⇐⇒ (∃p ∈ [TZ ])
⋂

σ∈p

Nσ = {x}

 .
For any Z ∈ [TP ], since TZ is a pruned sub-tree of TF and F is compact, the associated
set EZ is a non-empty, compact subset of F . And any non-empty, compact subset of
F may be represented by an infinite, pruned sub-tree of TF , so we have our desired
correspondence: PF = [TP ].

This representation helps to prove the following result.

Theorem 5.3.4. Let N be a scaling, b-branching, layered-disjoint net and subbasis
on (Ω, d) and having net Hausdorff premeasure ρ. Suppose F ⊆ Ω is compact with
(H ↾ N )ρ(F ) = +∞. Then there exists a compact subset E ⊆ F of arbitrarily large,
finite (H ↾ N )ρ-measure.

Any class F with (H ↾ N )ρ(F ) > 0 is certainly non-empty, so we may construct the
associated class PF as described above. Since 2ω is a complete metric space and PF ⊆ 2ω

is closed, PF may be viewed as a complete metric space in its own right.
Our general outline will now be as follows:

(1) Find a non-empty, compact subset S ⊆ PF such that if Z ∈ S, then the associated
subclass EZ ⊆ F satisfies (H ↾ N )ρ(EZ) > 0.

(2) Find a countable sequence of non-empty, open sets (U c
n)n in PF such that if

Z ∈ ⋂
n∈ω U c

n, then the associated subclass EZ ⊆ F satisfies (H ↾ N )ρ(EZ) < +∞.

(3) Show that each U c
n is dense in the induced subspace S ⊆ PF .

Since PF is complete, the closed subspace S in (1) will also be complete. And if each
U c

n is indeed dense in S, then by the Baire Category Theorem, the intersection ⋂n∈ω U c
n

will be dense in S as well. In particular, S ∩⋂n∈ω U c
n will be non-empty, and for any Z in

this intersection, the associated subclass EZ ⊆ F will satisfy 0 < (H ↾ N )ρ(EZ) < +∞,
as desired.
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Suppose U ⊆ b<ω. Understand DWρ(U) to evaluate the direct ρ-weight of the
collection of net elements {Nσ : σ ∈ U} whose addresses are in U .

For any natural numbers n ≤ m, define a function ϕn,m : PF → R as follows:

ϕn,m(Z) = min
U⊆b<ω

{DWρ(U) : (∀σ ∈ U) [n ≤ len(σ) ≤ m] and (∀σ ∈ TZ)(∃τ ∈ U)[τ ⪯ σ]} .

That is, ϕn,m(Z) is defined as the minimum direct ρ-weight of any cover U ⊆ b<ω of
[TZ ] by strings of length between n and m, inclusive. There are only finitely many U

considered in the computation of ϕn,m(Z). Since N is scaling, any such sequence U
covering [TZ ] may also be viewed as giving the minimal direct ρ-weight cover of EZ by
net elements having diameter between d(m) and d(n), inclusive.

Fixing c > 0, define for each n ∈ ω the set

U c
n := {Z ∈ PF : (∃m ≥ n)[ϕn,m(Z) < c]} .

For each n ∈ ω, it only takes finitely bits of Z to determine whether ϕn,m(Z) < c, so
each {Z : ϕn,m(Z) < c} is clopen in the product topology of 2ω. As the union of all such
sets for m ≥ n intersected with PF , the set U c

n is open in PF . Moreover, each U c
n is

non-empty, for if Z ∈ PF codes the singleton set EZ = {x}, then since N is scaling, we
have ϕn,m(Z) = h(d(m)), as witnessed by the unique length-m string σ with Z(σ) = 1.
So, pick m ≫ n large enough so that h(d(m)) < c to witness that Z ∈ U c

n.
Finally, we observe that if Z ∈ ⋂

n∈ω U c
n with c > 0 being fixed, then (H ↾ N )ρ(EZ) ≤

c < +∞. Indeed, take any δ > 0, and consider n ∈ ω for which d(n) < δ. By definition of
Z ∈ U c

n, there is some m ≥ n for which ϕn,m(Z) < c, implying there exists a d(n)-cover of
EZ using only elements of N and of direct ρ-weight less than c. Thus (H ↾ N )ρ

δ(EZ) < c.
Taking the limit as δ → 0 gives (H ↾ N )ρ(EZ) ≤ c.

We now define the set S to witness being of positive (H ↾ N )ρ-measure. For each
c > 0 and n ∈ ω, define the set:

Sc
n := PF \ U c

n = {Z ∈ PF : (∀m ≥ n)[ϕn,m(Z) ≥ c]} .

Note that each Sc
n is closed in PF as the complement of U c

n in PF .

Lemma 5.3.5. For any Z ∈ PF , c > 0, and n ∈ ω,

(H ↾ N )ρ
d(n)(EZ) ≥ c ⇐⇒ Z ∈ Sc

n.
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Proof. Suppose (H ↾ N )ρ
d(n)(EZ) ≥ c. Then, any d(n)-cover of EZ by net elements has

direct ρ-weight at least c. By definition and the assumption that N is scaling, this
includes all covers by net elements with addresses of length at least n. So, for any m ≥ n,
we have ϕn,m(Z) ≥ c, hence Z ∈ Sc

n.
In the reverse direction, assume Z ∈ Sc

n. Consider an arbitrary d(n)-cover U of EZ

by net elements. Since EZ is compact, it follows by N being a subbasis of (Ω, d) that
this cover has a finite subcover U ′ = {σ1, ..., σt}. Since N is scaling, each σi ∈ b<ω is of
length len(σi) ≥ n. Call m the maximum length of all such σi. Without loss of generality,
U ′ may be restricted to just those σi with an extension in TZ , for any σi without this
property would not be needed in the cover of EZ and could thus be deleted from U ′.

We claim that U ′ is one of the covers considered in computing ϕn,m(Z). Indeed, since
Z codes a pruned tree, any σ ∈ bm with Z(σ) = 1 must have some extension in EZ ,
which in turn must have some prefix σi ∈ U ′ as U ′ is a cover of EZ containing strings of
length at most m.

So, by the assumption that ϕn,m(Z) ≥ c, it follows that DWρ(U ′) ≥ c. And, by
monotonicity, the original cover U of EZ must also have DWρ(U) ≥ c. Since this
d(n)-cover by net elements was arbitrary, we may conclude (H ↾ N )ρ

d(n)(EZ) ≥ c, as
claimed.

By the assumption (H ↾ N )ρ(F ) = +∞, we have that for any c > 0 it must be
(H ↾ N )ρ

d(n)(F ) ≥ c for all sufficiently large n ≫ 1. Thus, by Lemma 5.3.5, the pruned
tree representation of F itself will be an element of all the classes Sc

n, witnessing these
classes to be non-empty.

Thus, to conclude Theorem 5.3.4, it will suffice to show the following.

Proposition 5.3.6. Let 0 < d < c, and let n0 ∈ ω be such that Sd
n0 is non-empty. Then,

for all n ∈ ω, the set U c
n is dense in Sd

n0.

This result relies on a Baire Category argument, and points to a forcing notion.
Now, before we can prove Proposition 5.3.6, let us first focus on the case when the

indices of these classes agree.

Lemma 5.3.7. Let 0 < d < c, and let n ∈ ω be fixed. If Sd
n is non-empty, then U c

n is
dense in Sd

n.

Proof. Fix a finite binary string ζ ∈ 2<ω having an infinite extension Z ∈ Sd
n. We claim

that ζ also has an extension in U c
n ∩ Sd

n. Without loss of generality, we may assume that
ζ is defined for all strings of a fixed length n′ ≥ n by extending ζ along Z. Call k the
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number of length-n′ strings σ for which Z(σ) = 1, and ε := c− d > 0. Choose m ≥ n′

sufficiently large so that h(d(m)) < min {c/k, ε}. And define Y0 ∈ PF to be an infinite
binary string such that for all σ ∈ b<ω:

(i) When len(σ) ≤ n′, set Y0(σ) = Z(σ),

(ii) When n′ < len(σ) ≤ m, set Y0(σ) = 1 if and only if σ is the lexicographically-least
of all extensions ν ⪰ σ ↾ n′ such that Z(ν) = 1, and

(iii) When len(σ) > m, set Y0(σ) = 1 if and only if both Y0(σ ↾ m) and Z(σ) = 1.

It is straightforward to check that Y0 satisfies all of the conditions for being in PF .
Observe that by condition (ii), we will have exactly k strings σ of length m for which
Y0(σ) = 1, since each of the k-many length-n′ strings represented in Z will yield exactly
one extension. Taking U to consist of exactly these k extensions of length m, then
DWρ(U) = k · h(d(m)) < c. This witnesses that ϕn,m(Y0) < c, and thus Y0 ∈ U c

n. Note
that Y0 ∈ [ζ] by condition (i).

If Y0 is also in Sd
n, then we are done. Otherwise, let {σ1, . . . , σt} be an enumeration

of all of the strings in bm for which Y0(σ) = 0 yet Z(σ) = 1. At least one such string
exists, or else, Y0 = Z, but Z ∈ Sd

n.
Inductively define the infinite binary strings Y1, . . . , Yt in PF ∩ [ζ] as follows, where

0 ≤ i < t:

• If Yi(σ) = 1, set Yi+1(σ) = 1, or

• If Yi(σ) = 0, set Yi+1(σ) = 1 if and only if both σ||σi+1 and Z(σ) = 1.

Again, it is straightforward to verify that these Yi are in fact elements of PF ∩ [ζ]. We
also have that Yt = Z, since any string σ ∈ TZ must be compatible either with something
in TY0 or with one of the strings from {σ1, . . . , σt}.

We claim that Yi must be in both Sd
n and U c

n for some 1 ≤ i ≤ t. For a fixed m′ ≥ m,
consider the values of ϕn,m′(Y0), ϕn,m′(Y1), . . . , ϕn,m′(Yt). We have that ϕn,m′(Y0) < c,
since ϕn,m(Y0) < c and ϕ is monotonically-decreasing in its second coordinate. We also
have that ϕn,m′(Yt) = ϕn,m′(Z) ≥ d by assumption. Moreover, we observe for each
0 ≤ i < t that

ϕn,m′(Yi) ≤ ϕn,m′(Yi+1) < ϕn,m′(Yi) + ε.

The first inequality follows from the fact that Yi(σ) = 1 implies Yi+1(σ) = 1. So any valid
cover for computing ϕn,m′(Yi+1), after deleting any strings not present in TYi

, gives a
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cover for Yi of no greater direct ρ-weight, hence valid in computing ϕn,m′(Yi). The second
inequality follows from the fact that if U is the minimal cover whose direct ρ-weight
witnesses ϕn,m′(Yi), then adding σi to this cover would give a cover valid in computing
ϕn,m′(Yi+1). Thus, by the choice of m,

ϕn,m′(Yi+1) ≤ ϕn,m′(Yi) + h(d(m)) < ϕn,m′(Yi) + ε.

It follows that one of the values

ϕn,m′(Y0), ϕn,m′(Y1), ..., ϕn,m′(Yt),

falls in the range [d, d+ ε) = [d, c), as ϕn,m′(Y0) < c and ϕn,m′(Yt) ≥ d. Let Y (m′) denote
the first element Yi for which ϕn,m′(Yi) ∈ [d, c). Since we only have finitely many Yi to
consider, at least one Yi must appear as Y (m′) for infinitely many m′ ≥ m. For such a Yi,
we have Yi ∈ U c

n, as any of these m′ ≥ m ≥ n will work as a witness for ϕn,m′(Yi) < c.
But since we can find arbitrarily large values of m′ ≥ n for which ϕn,m′(Yi) ≥ d, it follows
by monotonicity that we in fact have ϕn,m′(Yi) ≥ d for all m′ ≥ n, giving Yi ∈ Sd

n, as
desired.

Returning to Proposition 5.3.6, by induction it now suffices to prove that if U c
n is

dense in Sd
n0 for some n ≥ n0, we also must have U c

n+1 being dense in Sd
n0 . To do this,

we would want to be able to pass from a cover witnessing Z ∈ U c
n to a cover witnessing

Z ∈ U c
n+1. Of course, the length-n strings in that original cover will need to be replaced

by proper extensions. The following definitions identify strings which can be replaced
without significantly increasing the direct ρ-weight of the cover.

Definition 5.3.8. Let Z ∈ PF and τ ∈ b<ω. Then Zτ ∈ PF denotes the infinite binary
string defined by Zτ (σ) = 1 if and only if σ || τ and Z(σ) = 1.

Definition 5.3.9. Let Z ∈ PF and n ∈ ω. Define Z to be n-thin if for every τ ∈ bn, we
have

lim
m→∞

ϕn+1,m(Zτ ) ≤ h(d(n)).

And let Tn denote the set of all n-thin sequences.

As we will see, the n-thin sequences suffice for passing from U c
n to U c

n+1.

Lemma 5.3.10. For all n ∈ ω and c > 0, we have U c
n ∩ Tn ⊆ U c

n+1.
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Proof. Take Z ∈ U c
n ∩ Tn, and let U = {τ1, ..., τt} be a minimal cover for Z witnessing

that ϕn,m(Z) < c for some m ≥ n.
If all strings in U have length at least n + 1, then this cover also witnesses that

ϕn+1,m(Z) < c, yielding Z ∈ U c
n+1, as desired.

Otherwise, assume without loss of generality that there is some u with 1 ≤ u ≤ t for
which τ1, τ2, ..., τu are exactly the strings in U of length n. Since DWρ(U) < c, we may
choose ε > 0 small enough so that we also have DWρ(U) < c− ε. Since Z is n-thin, we
may choose m′ ≥ m so large that for all τi in U of length n, we have

ϕn+1,m′(Zτi) < h(d(n)) + ε

u
.

For each 1 ≤ i ≤ t, let Vi be a minimizing cover witnessing ϕn+1,m′(Zτi), and let U ′

be the cover obtained by replacing each string τi in U with the strings from Vi. It is
straightforward to verify that U ′ is still a valid cover for computing ϕn+1,m′(Z). And the
direct ρ-weight of this new cover satisfies:

DWρ(U ′) =
∑

1≤i≤u

DWρ(Vi) + DWρ({τu+1, ..., τt})

<
∑

1≤i≤u

(
h(d(n)) + ε

u

)
+ DWρ({τu+1, ..., τt}) = DWρ(U) + ε < c.

This proves that Z is an element of U c
n+1, as desired.

It remains to show that the n-thin elements are sufficiently numerous within each
non-empty set Sd

n0 .

Lemma 5.3.11. Let d > 0 and let n0 ∈ ω be such that Sd
n0 is non-empty. Then for all

n ≥ n0, the set Tn is dense in Sd
n0.

Proof. Fix n ≥ n0 and a finite binary string ζ ∈ 2<ω having an infinite extension Z ∈ Sd
n0 .

We claim that ζ has an extension in Tn ∩ Sd
n0 . Without loss of generality, we may assume

that ζ is defined for all strings of length n by extending ζ along Z. For each τ ∈ bn,
denote by ζτ ∈ 2len(ζ) the string defined by

ζτ (σ) = 1 ⇐⇒ σ || τ and ζ(σ) = 1.

We start by defining an element Y ∈ Tn ∩ [ζ], and later check that Y ∈ Sd
n0 , witnessing

Tn being dense in Sd
n0 .
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To define the element Y ∈ PF , it suffices to both specify Y τ for each τ ∈ bn and further
ensure that each Y τ extends ζτ . In this way, the final sequence Y will be well-defined.

If a string σ ∈ b<ω is compatible with two distinct strings τ1, τ2 ∈ bn, then σ must be
a common prefix for both of these strings, implying len(σ) < n. Therefore, Y (σ) will be
determined by ζ(σ) by the assumption that ζ is defined on all strings of length up to n.
It is also straightforward to show that Y will be an element of PF so long as each Y τ is.

Given τ ∈ bn, we say that τ is n-thin for Z if:

lim
m→∞

ϕn+1,m(Zτ ) ≤ h(d(n)).

We further collect into T Z
n ⊆ bn all the n-thin strings for Z. Now, define Y τ = Zτ

whenever τ ∈ T Z
n . Noting that ζτ ⪯ Zτ , the claim is satisfied for these τ .

Otherwise, τ ̸∈ T Z
n , so it must be that

lim
m→∞

ϕn+1,m(Zτ ) > h(d(n)),

which, by monotonicity, implies that ϕn+1,m(Zτ ) > h(d(n)) for all m ≥ n + 1, hence
Zτ ∈ Sh(d(n))

n+1 .

Take (ri)i∈ω to be any decreasing sequence of positive real numbers converging to 0.
By Lemma 5.3.7, it follows that Uh(d(n))+ri

n+1 is dense in Sh(d(n))
n+1 for each i ∈ ω. And by

the Baire Category Theorem, the intersection ⋂i Uh(d(n))+ri

n+1 is also dense in Sh(d(n))
n+1 . And

since ζτ ⪯ Zτ ∈ Sh(d(n))
n+1 , it follows that [ζτ ] ∩ Sh(d(n))

n+1 ≠ ∅. Thus, we may fix a sequence
Y τ ∈ [ζτ ] ∩ Sh(d(n))

n+1 ∩ ⋂i Uh(d(n))+ri

n+1 .
The fact that Y τ ∈ Sh(d(n))

n+1 implies that ϕn+1,m(Y τ ) ≥ h(d(n)) for all m ≥ n+ 1. Yet,
for any ε > 0, one may choose i ≫ 1 for which ri < ε. Then, since Y τ ∈ Uh(d(n))+ri

n+1 , there
exists some m ≥ n+ 1 for which

ϕn+1,m(Y τ ) < h(d(n)) + ri < h(d(n)) + ε.

So, by the monotonicity of ϕn+1,m(Y τ ) in its second component, we conclude that

lim
m→∞

ϕn+1,m(Y τ ) = h(d(n)).

This construction guarantees that Y both extends ζ and is n-thin.
Now we show that Y is indeed an element of Sd

n0 , i.e., that ϕn0,m(Y ) ≥ d for each
m ≥ n0. By monotonicity, it suffices to only consider m ≥ n ≥ n0. Fix such an m ≥ n

and suppose U ⊆ b<ω is a cover valid for computing ϕn0,m(Y ). We wish to show that
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DWρ(U) ≥ d.
Without loss of generality, we may take U to be prefix-free, for any strings in U having

proper prefixes in U may be deleted while maintaining the cover’s validity in computing
ϕn0,m(Y ) and not increasing the direct ρ-weight of the resulting cover. We plan to push
the cover U to a cover U ′ valid instead for computing ϕn0,m(Z) and satisfying DWρ(U ′) ≤
DWρ(U). Since Z is an element of Sd

n0 , this would yield DWρ(U) ≥ DWρ(U ′) ≥ d,
putting Y ∈ Sd

n0 , as U was arbitrary.
Consider all τ ∈ bn \ T Z

n . Denote by Vτ the collection of all proper extensions of τ in
U . If Vτ = ∅, do nothing. Otherwise, replace in the cover U all strings in Vτ by τ itself.
Let us argue why this replacement will not increase the direct ρ-weight of the cover.

Note that all strings in Vτ have length between n+ 1 and m, inclusive. And if σ ∈ bm

is such that Y τ (σ) = 1, then σ must extend some element of Vτ . Given that the original
set U is a cover for Y , we have that σ extends some element µ ∈ U compatible with τ . If
µ ⪯ τ , then µ would be a proper prefix of any element in Vτ , contradicting the fact that
Vτ was non-empty and U was prefix-free. Therefore, it must be that µ ≻ τ , meaning
µ ∈ Vτ . Taken together, we see that Vτ is valid cover for computing ϕn+1,m(Y τ ). Since
τ ̸∈ T Z

n , the construction of Y yields that ϕn+1,m(Y τ ) ≥ h(d(n)), so DWρ(Vτ ) ≥ h(d(n)).
So, as τ has length n, replacing all of Vτ with τ cannot increase the direct ρ-weight of U .

Let U ′ be the cover obtained by performing this replacement for all τ ∈ bn \ T Z
n . It

remains to check that U ′ valid for computing ϕn0,m(Z). Since the replacement process
may only add strings of length n, and n0 ≤ n ≤ m, the sequence U ′ satisfies the length
condition.

For the covering condition, suppose we have a string σ ∈ bm for which Z(σ) = 1.
Let τ = σ ↾ n. Suppose τ ∈ T Z

n . Then by construction, we have Y τ = Zτ , so
Y τ (σ) = Zτ (σ) = 1. As the original cover U is valid for ϕn0,m(Y ), this implies that U
contains some prefix of σ compatible with τ . This prefix will still be in U ′, since we only
removed strings which extended elements of bn \ T Z

n .
Otherwise, τ /∈ T Z

n . The original cover U is valid for computing ϕn0,m(Y ), and hence
valid for ϕn0,m(Y τ ), as well. Given that ϕn+1,m(Y τ ) ≥ h(d(n)), there must be at least
one string σ′ ∈ bm such that Y τ (σ′) = 1. So, this σ′ has a prefix µ ∈ U compatible with
τ . If µ ⪯ σ, then µ is also a prefix of σ and is not removed when passing to the cover
U ′. Otherwise, µ is removed and replaced with τ . Either way, we get that U ′ contains a
prefix of σ, completing the argument that U ′ is a valid cover for computing ϕn0,m(Z), as
desired.

Now we may prove the key density result.
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Proof of Proposition 5.3.6. By Lemma 5.3.7 and since the sequence (U c
n)n is nested-

decreasing, we get that U c
n is dense in Sd

n0 for all n ≤ n0.
Assume we have shown that U c

n is dense in Sd
n0 for some n ≥ n0. We now show that

U c
n+1 is dense in Sd

n0 as well.
Fix a finite binary string ζ ∈ 2<ω having an infinite extension Z ∈ Sd

n0 ∩ U c
n. Since the

set U c
n is open, we may choose an extension ζ ⪯ ζ ′ ≺ Z for which [ζ ′] ∩ Sd

n0 ⊆ U c
n. Now,

as [ζ ′] ∩ Sd
n0 ̸= ∅ (Z is contained in their intersection), Lemma 5.3.11 implies there exists

an n-thin sequence Y ∈ [ζ ′] ∩ Sd
n0 ∩ Tn. And by the choice of ζ ′, we have Y ∈ Tn ∩ U c

n,
so by Lemma 5.3.10, Y ∈ U c

n+1. This shows that U c
n+1 is dense in Sd

n0 . The result now
follows by induction.
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Chapter 6 |
Conclusion and Open Questions

Algorithmic information theory continues to offer insights into geometric measure theory.
In this dissertation, we have reviewed a subset of the existing results, methods, and
notions relevant for witnessing this connection. We have proved some extra robustness
and relations in the effective framework, and have extended AIT to a broader class of
metric spaces. Namely, net spaces are a productive setting over which to work with
algorithmic information theory. And effective notions most closely simulate their classical
counterparts over net spaces which are sufficiently rich with net measures. This is
exemplified by the various point-to-set principles.

6.1 Dependence on the Net or Dense Subset
Certain notions in algorithmic information theory explicitly depend on the choice of a
computable dense subset (or net) with respect to which approximations are taken. For
instance, as introduced in Section 1.7, the standard lift of prefix complexity to Euclidean
space bases an arbitrary subset’s complexity solely on the rational points it contains.
Similarly, N. Lutz’s locally-optimal outer measure κ(X) := 2−K(X) satisfies κ(X) =
κ(X∩Qm), as well as some finiteness properties specific to Qm. How would another choice
of computable dense subset affect these notions of complexity and measure? Lemma 4.8
in [35] makes clear that multiplicative domination (in the sense of Definition 4.4.14) on
dyadic cubes is equivalent to multiplicative domination on the collection of open balls of
dyadic rational radius; and their Theorem 4.5 implies that their choice of κ based on
Qm dominates on both these nets. But for other choices of computable dense subset,
it is not clear that the corresponding lift of prefix complexity would assign comparable
complexities to each subset of Rm, nor comparable measures to each subset according to
the corresponding outer measure κ. Thus, the local dimension notion associated to κ
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would not necessarily match with other effective dimension notions. Analogous questions
may be asked over generic net spaces.

6.2 Conditional, Mutual Dimension
In Section 1.10, we reviewed two variants of effective dimension: mutual and conditional
dimensions. Notice that for finitary objects, it was indeed possible to define a conditional,
mutual information of the form I(a : b | c): this intuitively measures the information
content of the pair of objects a and b when given the data c. But mutual dimension
is only defined in the unconditional sense. Can a useful notion of conditional, mutual
dimension be defined? If m,n, ℓ ∈ ω, x ∈ Rm, y ∈ Rn, z ∈ Rℓ, and r, s, t ∈ ω, then one
reasonable candidate definition would be:

mdim(x : y | z) := lim inf
r→∞

Ir:r|r(x : y | z)
r

, Ir:s|t(x : y|z) := min
u

{
min
p,q

{I(p : q | u)}
}
,

where the choices from p, q, and u range in: p ∈ B2−r(x) ∩ Qm, q ∈ B2−s(y) ∩ Qn, and
u ∈ B2−t(z) ∩ Qℓ. The definition for Ir:s|t is analogous to that of the conditional prefix
complexity Kr|s.

Recall that conditional complexity admits an approximation by K-minimizers. That
is, Kr|s(x | y) ≈ K(p∗ | q∗), where p∗ and q∗ are K-minimizers of the balls B2−r(x) and
B2−s(y), respectively (see Proposition 2.1.9). But in the case of conditional, mutual
information, there is not as clear of a path towards showing the analogous statement:
Ir:s|t(x : y | z) ?≈ I(p∗ : q∗ | w∗), where each p∗, q∗, and w∗ are K-minimizers of the
appropriate balls about x, y, and z, respectively. To be specific, while a quick calculation
shows the approximate inequality Ir:s|t(x : y | z) ≥ I(p∗ : q∗ | w∗) in one direction, we
are missing a proof of the reverse direction. The main issue is the lack of known results
analogous to the linear sensitivities of conditional complexity: Lemmas 2.1.3 and 2.1.4.

If the approximation to Ir:s|t by K-minimizers does hold up to logarithmic terms,
then an analogous result to Theorem 2.1.11 should follow for mutual information, and
one could go on to define a conditional, mutual dimension and compare it to the other
variants to effective dimension.
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6.3 Applications of CALFs
Recall from Chapter 3 that a continuous absolutely Lipschitz family (CALF) generalizes
the uniform continuity properties satisfied by the family of non-vertical planar lines
expressed in slope-intercept form. Generalizing the results of N. Lutz and D. Stull for
planar lines, we have shown that every CALF admits both a finitary theorem (3.3.3) on
the Kolmogorov complexity of points along its graph, as well as an infinitary theorem
(3.4.2) on the effective dimension of points along its graph.

In [40], N. Lutz and D. Stull used their infinitary theorem (Theorem 1.1) and the Point-
to-Set Principle 1.12.1 to demonstrate a new lower-bound for the Hausdorff dimension of
generalized Furstenberg sets. Given d, δ ∈ [0, 1], the class of generalized Furstenberg sets
for d and δ is denoted Fd,δ, and a subset X ⊆ R2 qualifies for X ∈ Fd,δ if there is some
J ⊆ S1 such that dimH J ≥ d and such that for any e ∈ J , there exists a line le in the
direction e for which dimH(X ∩ le) ≥ δ. Then given d, δ > 0 and X ∈ Fd,δ, Theorem 4.3
in [40] states dimH X ≥ δ + min {d, δ}.

For a more general family of maps such as a CALF Φ on a domain Ω × Ξ ⊆ Rm ×Rℓ,
one could similarly define a collection of subsets FΦ

d,δ for any 0 ≤ d ≤ m and 0 ≤ δ ≤ ℓ

as follows: X ⊆ Rn satisfies X ∈ FΦ
d,δ whenever there exists J ⊆ Ω with dimH J ≥ d

and for all α ∈ J , there exists another α′ ∈ Ω with dim(α′) = dim(α) such that
dimH(X ∩ Φα′) ≥ δ. It is not clear for a given CALF Φ whether FΦ

d,δ will be non-empty,
or whether FΦ

d,δ will have a useful interpretation in the context of geometric measure
theory. But the proof method of Theorem 4.3 in [40] likely extends for such sets for
non-empty FΦ

d,δ when d, δ > 0, and should make use of Theorem 3.4.2.
Each new example of a CALF provides a new geometry over which to consider possible

implications for classical geometric measure theory. Certain families of planar isometries
are natural candidates for CALFs. While the scaling Lipschitz continuity property is
more or less clear for families of isometries, we run into difficulties demonstrating the
other conditions. For instance, proving the scaling co-Lipschitz continuous differences
property for the family of planar rotations is made difficult by the situation that the
difference between two angle parameters can be large while the angular difference between
them is small. Additionally, it is not clear that one may parameterize the family of planar
reflections in a 1-dimensional subspace on an open domain fit for describing them by a
CALF.

It is possible that certain results from classical geometric measure theory admit
corresponding finitary results. That is, we imagine any statement about the Hausdorff
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dimension of sets in Euclidean space having a corresponding statement about the Kol-
mogorov complexity of finitary inputs and outputs as in Theorem 3.3.3. And that finitary
result should imply a similar statement but for effective dimension as in Theorem 3.4.2.
And by applying the Point-to-Set Principle, one could recover the classical result for
Hausdorff dimension. We hope to see more examples of this finitary-infinitary structure
for more results in GMT.

6.4 Effectivity for the Subsets of Exact Measure
As discussed in Section 5.3, we have extened Besicovitch’s result about finding compact
subsets of finite, non-zero s-measure to sufficiently nice nets in our Theorem 5.3.4. The
proof of this result relies on a density result: Proposition 5.3.6.

The n-thin sequences defined in our proof play the crucial role of helping pass from
U c

n to U c
n1 , as shown in Lemma 5.3.10. They have the special property that any length-n

string used in a cover of EZ may be replaced by proper extensions to make another cover
of EZ not significantly greater in its direct ρh-weight. The n-thin sequences were shown
to be dense in any non-empty Sd

n0 whenever n ≥ n0 in Lemma 5.3.11. We suspect that
the n-thin sequences should be useful in other contexts involving making refinements to
optimal covers.

One could also imagine effectivizing the proof of Theorem 5.3.4 as follows: finding an
oracle B ∈ 2ω such that, if F ⊆ 2ω were in fact a Π0

1-class, B is strong enough to compute
a code Z ∈ PF for which EZ satisfies the desired properties, putting EZ ∈ Π0

1(B). One
might even modify ϕn,m(Z) to instead optimize over the a priori discrepancy ∆Ms(σ)
over the strings for which Z(σ) = 1. Then, an appropriate lightface version (i.e.,
correspondence principle) of Lutz and Miller’s point-to-set principle 4.6.7 would relate
this function back to the Hausdorff s-measure of the compact subset EZ coded by Z. In
particular, we hope for an effective proof of Besicovitch’s result over Cantor space via
lower-semicomputable continuous semimeasures.
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