
CLASSIFICATION OF QUATERNION ALGEBRAS OVER Q

RAYMOND FRIEND

Abstract. Quaternion algebras over any field can be classified into two types:

trivial matrix algebras, or division algebras. When we consider our field as Q,

we notice an infinite number of non-isomorphic quaternion division algebras,
unlike its completion: R, which has only two quaternion algebra isomorphism

classes.
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1. Introduction

A complex number is a sum a+ bi, where a, b ∈ R and i2 = −1. These numbers
are useful for calculations in R2 and as a completion of R algebraically. In the
early 19th century, William Hamilton wished to express multiplication in higher
dimensions; namely, in R3. He found a way to do so using not just one more
imaginary unit, but two, birthing what are now known as the Quaternions.

We can extend the notion of Quaternions past being over the natural field R,
but some general field, F . And rather than require the imaginary units i, j each be
square roots of −1, we may allow each to be square roots of any nonzero element
of the field F . Generalizing in this way allows us to analyze general properties
of quaternion algebras over any field. One important task when considering all
quaternion algebras is determining which algebras are division rings. Division rings
have the useful property that unique division operations may occur in the algebra.

The classification of quaternion algebras over R and Q differ greatly: while R
only possesses two distinct quaternion algebras up to isomorphism, Q possesses an
infinite amount.

2. The Quaternions

Definition 2.1 (Hamilton’s Quaternions). Hamilton’s quaternions are

H = {a + bi + cj + dk : a, b, c, d ∈ R} ,
where the following multiplication conditions are imposed:
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• i2 = j2 = k2 = −1
• ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j
• ∀a ∈ R, a commutes with i, j, and k.

Despite H being even more general than R and C, we can generalize the quater-
nion structure over other fields. Let F be a field of characteristic 6= 2. This
condition is important because a natural implication of char(F ) = 2 is 1 = −1, an
undesirable, defective property. A quaternion algebra over F is an algebra A over
F satisfying the following conditions:

• (Simple) its radical R is trivial,
• (Central) its center Z = {x ∈ A | xy = yx for all y ∈ A} = F,
• dimF (A) = 4.

Define a quaternion basis {1, u, v, w} as following the multiplicative relations:
u2, v2 ∈ F×, w = uv = −vu, and every c ∈ F commutes with u and v. If u2 = a
and v2 = b, then denote the ring algebra (a, b)F := F + Fu + Fv + Fw. The
multiplicative rules on u, v, and w are consistent with the axioms of a ring because
we can realize the operations in (a, b)F as addition and multiplication of certain
2× 2 matrices.

Each quaternion algebra over fixed field F is isomorphic to some algebra (a, b)F .
In particular, Hamilton’s Quaternions H = (−1,−1)R , and the matrix algebra
M2(F ) ∼= (1, 1)F .

We may define the conjugate and norm of an element q = x0+x1u+x2v+x3w ∈
(a, b)F .

Definition 2.2. The conjugate, or standard involution in A, q, of q is

q = x0 − x1u− x2v − x3w.

These properties of conjugation are straightforward to derive:

q1 + q2 = q1 + q2,

q = q,

cq = cq for c ∈ F,

q = q ⇔ q ∈ F.

Definition 2.3. The norm, N(q), of q is

N(q) = qq = x2
0 − ax2

1 − bx2
2 + abx2

3.

As with H, qq = qq in (a, b)F , which may be checked by direct calculation. Thus,
the norm is a multiplicative function N : (a, b)F → F . Since char(F ) 6= 2, (a, b)F
is noncommutative because u and v don’t commute. We call a quaternion algebra
A a division algebra, division ring, or skew field, if the two equations for given
a, b 6= 0 ∈ A are uniquely solvable for certain x, y ∈ A:

bx = a,

yb = a.

Remark 2.4. Along with the fact that each quaternion algebra is over a field F
with multiplicative identity 1, we can establish some equivalent definitions of a
division algebra.
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• Each element has a two-sided inverse:

∀ q ∈ A,∃ q−1 ∈ A such that qq−1 = q−1q = 1,

• Only 0 has 0 norm:

N(q) = 0⇒ q = 0,

• No nontrivial zero divisors:

For p, q ∈ A, pq = 0⇒ p = 0 or q = 0.

For example, below is a proof of the equivalence between the first and second
conditions.

Proof. Given q ∈ A×, suppose qq′ = 1 for some q′ ∈ A. Then N(q)N(q′) = N(1) =
1 in F by multiplicativity of N , so N(q) ∈ F×. Conversely, suppose N(q) ∈ F×.
Since N(q) commutes with all elements of (a, b)F , the equation N(q) = qq = qq
can be written as

q · 1

N(q)
q =

1

N(q)
q · q = 1,

so q/N(q) is a 2-sided inverse of q. �

3. Isomorphisms and Splitting

An isomorphism between two quaternion algebras A and A′ over a field F is
a ring isomorphism f : A → A′ that fixes the elements of F . Considering bases
to these vector spaces helps to determine whether two quaternion algebras are
isomorphic.

Definition 3.1. A basis of (a, b)F having the form {1, e1, e2, e3} where e21, e
2
2 ∈ F×,

and e1e2 = −e2e1 is called a quaternionic basis of (a, b)F .

The defining basis {1, u, v, w} of (a, b)F is a quaternionic basis. In any quater-
nionic basis, the three elements e1, e2, e1e2 anti-commute, and (e1e2)2 = −e21e22. We
can derive some basic isomorphisms between quaternion algebras by clever choices
of bases:

(1) {1, v, u, vu} is a quaternionic basis of (a, b)F , so (a, b)F
∼= (b, a)F ,

(2) {1, u, w, uw} is a quaternionic basis of (a, b)F , so (a, b)F
∼= (a,−ab)F ,

(3) {1, v, w, vw} is a quaternionic basis of (a, b)F , so (a, b)F
∼= (b,−ab)F ,

(4) {1, cu, dv, (cu)(dv)} is a quaternionic basis of (a, b)F for all c, d ∈ F×, so

(a, b)F
∼=
(
ac2, bd2

)
F
.

Theorem 3.2. For all a ∈ F×, (a, 1)F
∼= M2(F ).

Once proven, this theorem implies(
a, c2

)
F
∼= (a,−a)F

∼= (a, 1)F
∼= M2(F )

Proof. Send the basis 1, u, v, w of (a, 1)F to M2(F ) as follows:

1 7→
(

1 0
0 1

)
, u 7→

(
0 1
a 0

)
, v 7→

(
1 0
0 −1

)
, w 7→

(
0 −1
a 0

)
.

Since 1 6= −1 in F , 1 and v are not sent to the same matrix. Extend this mapping
by F -linearity to a function f : (a, 1)F →M2(F ):

f : x0 + x1u + x2v + x3w 7→
(

x0 + x2 x1 − x3

a(x1 + x3) x0 − x2

)
.
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The image of 1, u, v, w in M2(F ) is a linearly independent set, so by a dimension
count this F -linear mapping (a, 1)F → M2(F ) is a bijection. Scalar c ∈ F maps
to cI2 ∈ M2(F ), so F is fixed point-wise. For completeness, f can be checked by
direct calculation to preserve multiplication as a homomorphism. �

Definition 3.3. We call any quaternion algebra isomorphic to M2(F ), including
M2(F ) itself, a trivial, or split, quaternion algebra over F . If (a, b)F � M2(F ), we
say (a, b)F is a non-split quaternion algebra over F .

Definition 3.4. More generally, for a field extension F ⊂ K and a, b ∈ F×, we say
(a, b)F splits over K when (a, b)K

∼= M2(K).

In the classification of quaternion algebras, we wish to know whether or not
(a, b)F

∼= M2(F ). There are a few conditions essential to answering this question.

Lemma 3.5. For a ∈ F×, the set of nonzero x2 − ay2 with x, y ∈ F is a subgroup
of F×.

Proof. The number 1 has this form (x = 1, y = 0). Numbers of this form are closed
under multiplication since

(x2
1 − ay21)(x2

2 − ay22) = (x1x2 + ay1y2)2 − a(x1y2 + x2y1)2.

Nonzero numbers of this form are closed under inversion using the identity: 1/t =
t/t2 :

1

x2 − ay2
=

(x2 − ay2)2

x2 − ay2
=

(
x

x2 − ay2

)2

− a

(
y

x2 − ay2

)2

.

�

Definition 3.6 (Norm Subgroup). For a ∈ F×, let Na = Na(F ) be the set of all
nonzero x2 − ay2 where x, y ∈ F .

By Lemma 3.5, Na < F×, and the field squared: (F×)2 ⊂ Na using y = 0.

Theorem 3.7. If a is a square in F , then Na = F×.

Proof. Write a = c2 for some c ∈ F×. Then x2 − ay2 = x2 − c2y2 = x2 − (cy)2 =
(x−cy)(x+cy). The change of variables x′ = x−cy and y′ = x+cy is invertible by
char(F ) = 2 (x = (x′ + y′)/2, and y = (y′ − x′)/(2c)), so Na = {x′y′ : x′, y′ ∈ F×},
which assumes all values in F× by choosing y′ = 1. �

Remark 3.8. The converse of Theorem 3.7 is generally false: Na could be F×

without a being a square in F .

Theorem 3.9. If b ∈ Na, then (a, b)F
∼= M2(F ).

Proof. Write b = x2
0−ay20 with x0 and y0 in F . The ring (a, b)F has a quaternionic

basis:
{1, u, x0v + y0w, u(x0v + y0w)} .

The fourth element is x0w + y0av by the formulas for uv and uw. The change of

base matrix from v, w to x0v + y0w, ay0v + x0w has det

(
x0 y0
ay0 x0

)
= b 6= 0. Thus,

the above set of four elements of (a, b)F is linearly independent over F , so it is a
basis of (a, b)F . This basis is quaternionic because (x0v + y0w)2 = bx2

0− aby20 = b2,

and u and x0v + y0w anti-commute. Therefore, b ∈ Na ⇒ (a, b)F
∼=
(
a, b2

)
F
∼=

(a, 1)F
∼= M2(F ). �
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Example 3.10. When p is prime and p = 2 or p ≡ 1 (mod 4), Fermat’s two-
square theorem says such a p is a sum of two squares in Z. Therefore, p ∈ N−1(Q),
meaning (−1, p)Q

∼= M2(F ).

Theorem 3.11. A quaternion algebra (a, b)F that is not a division algebra is iso-
morphic to M2(F ).

Proof. Since we already know that
(
c2, b

)
F
∼= M2(F ), we can assume a is not a

square in F . And since we assume F is not a division algebra, it must contain a
nonzero element q = x0 + x1u + x2v + x3w with N(q) = 0. Then

N(q) = 0⇒ x2
0 − ax2

1 − bx2
2 + abx2

3 = 0⇒ x2
0 − ax2

1 = b(x2
2 − ax2

3).

Since a is not a square in F , we must have x2
2 − ax2

3 6= 0 by contradiction: if
x2
2 − ax2

3 = 0, then x3 = 0 since otherwise, we could solve for a to see it is a square
in F , so also x2 = 0. That implies x2

0 − ax2
1 = 0, so also x1 = 0 and x0 = 0, but

then q = 0.
Solving for b,

b =
x2
0 − ax2

1

x2
2 − ax2

3

∈ Na,

so (a, b)F
∼= M2(F ) by Theorem 3.9. �

Example 3.12. Let A = (5, 11)Q. Since for h = 1 + 3u + v + w 6= 0, N(q) =

12−(5) ·32−(11) ·12 +(55) ·12 = 0, A is not a division algebra. Hence, by Theorem
3.11, A ∼= M2(F ).

Theorem 3.13 (Forward and Converse of Theorem 3.9). For a and b in F×, (a, b)F
∼=

M2(F ) if and only if b ∈ Na.

Proof. If b ∈ Na, then (a, b)F
∼= M2(F ) by Theorem 3.9. Conversely, suppose

(a, b)F
∼= M2(F ). To show b ∈ Na, we can assume a is not a square in F×, since

if a were a square then Na = F× by Theorem 3.7, so obviously b ∈ Na. When
(a, b)F is not a division ring and a is not a square, the proof of Theorem 3.11 shows
b ∈ Na. �

Corollary 3.14. If F is an algebraically closed field, then for any a, b ∈ F×, (a, b)F
∼=

M2(F ).

Example 3.15. The real, complex field C is algebraically closed (every element
has a square root within C), so any (a, b)C

∼= M2(C).

We now can conclude that for some field F of characteristic 6= 2, (a, b)F being
non-split is equivalent to being a division ring. And (a, b)F being split is equivalent
to b ∈ Na.

Theorem 3.16. For a, b ∈ F×, the following conditions are equivalent for a split
algebra:

(1) (a, b)F
∼= M2(F ),

(2) the equation ax2 + by2 = 1 has a solution (x, y) in F ,
(3) the equation ax2 +by2 = z2 has a solution (x, y, z) in F other than (0, 0, 0).

The negation of each condition give us equivalent conditions for being a non-split
quaternion algebra.

Theorem 3.13 equivalently says (a, b)F
∼= (a, 1)F if and only if b ∈ Na. This

statement may be generalized in the following theorem.
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Theorem 3.17. For a, b, b′ ∈ F×, (a, b)F
∼= (a, b′)F if and only if b/b′ ∈ Na.

Proof. The backwards direction is simpler to perform first. Suppose b/b′ = x2
0−ay20

for some x0, y0 ∈ F . Let {1, u, v, uv} be the quaternionic basis of (a, b′)F . We
have that the same basis from Theorem 3.9: {1, u, x0v + y0w, u(x0v + y0w)}, is
linearly independent, and is also a quaternionic basis of (a, b′)F . Here, u2 = a and
(x0v + y0w)2 = b′x2

0 − ab′y20 = b′(b/b′) = b. Thus, (a, b)F
∼= (a, b′)F .

Conversely, we assume (a, b)F
∼= (a, b′)F . Either both are division rings or both

are not division rings.
First suppose (a, b)F and (a, b′)F are not division rings. Both are isomorphic to

M2(F ), so b ∈ Na and b′ ∈ Na by Theorem 3.13. Since Na < F×, b/b′ ∈ Na by
closure.

Finally, suppose (a, b)F and (a, b′)F are division rings, implying a is not a square
in F . With the same standard basis {1, u, v, uv} of (a, b′)F , our initial assumption
gives that (a, b′)F contains another quaternionic basis {1, u0, v0, u0v0}, where

u2
0 = a, v20 = b, u0v0 = −v0u0.

The polynomial T 2 − a is irreducible over F since a is not a square in F , and
both u and u0 are roots of this polynomial in (a, b′)F . By a theorem proved in
[3] (Theorem 16.8), u = qu0q

−1 for some nonzero q ∈ (a, b)F . Set ṽ = qv0q
−1, so

ṽ2 = (qv0q
−1)(qv0q

−1) = qv20q
−1 = qbq−1 = b. Then

u0v0 = −v0u0 ⇒ (qu0q
−1)(qv0q

−1) = −(qv0q
−1)(q00q

−1)⇒ uṽ = −ṽu.
The elements of (a, b′)F that anti-commute with u are Fv + Fw, so ṽ = xv + yw
for some x, y ∈ F . Then

b = ṽ2 = (xv + yw)2 = b′x2 − b′ay2 = b′(x2 − ay2)⇒ b

b′
∈ Na.

�

4. Comparing Rational and Real Division Rings

It turns out that classifying the quaternion algebras over R is much easier than
doing so over Q < R. In fact,

Theorem 4.1. For field R, there are only two isomorphism classes for quaternion
algebras:

(a, b)R
∼=

{
H if a < 0 and b < 0,

M2(R) if a > 0 or b > 0.

Proof. Assume a > 0 and b ∈ R×. (We see that because (a, b)F
∼= (b, a)F , the roles

of a and b are interchangeable and thus it is sufficient to only consider this case
when at least one of a and b are positive). Because a is positive, a = c2 for some
c ∈ R. Then, by Theorem 3.2, (a, b)R

∼=
(
c2, b

)
R
∼= (1, b)R

∼= M2(R).
Now assume both a, b < 0. Recall that one property of the quaternion algebra

(a, b)F by definition is that center(a, b)F = F . In [3] (pp. 219-220), a theorem of
Frobenius states that any division ring with center R that is finite-dimensional as
a vector space over R is isomorphic to either R or H.

Now notice that @ c ∈ R such that c2 = a. Thus, we must introduce another
vector u ∈ (a, b)R\R to complete R algebraically, where u2 = a. Thus, dim (a, b)R >
1, and by the Frobenius’ theorem, (a, b)R

∼= H. �
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It is quite easy, then, to classify the quaternion algebras over R. This is not the
case for Q, however.

Lemma 4.2. There are infinitely many prime numbers p congruent to 3 mod 4.

Proof. We first prove the claim that if a ≡ 3 (mod 4), then ∃ prime p such that
p | a and p ≡ 3 (mod 4). Clearly, all primes dividing such an a are odd. Suppose all
such primes are congruent to 1 (mod 4). Then their product would also be a ≡ 1
(mod 4), a contradiction.

Now suppose a finite number of primes congruent to 3 mod 4, listed p1 =
3, p2, ..., pn. Take a = 4p1p2 · · · pn − 1. We see that pi - a for all i = 1, ..., n,
since each pi | 4p1p2 · · · pn, and each pi ≥ 3. By the previous claim, a must have
a prime factor p such that p ≡ 3 (mod 4): a contradiction to pi - a, since p = pi
for some 1 ≤ i ≤ n. Thus, there must be infinitely many primes congruent to 3
(mod 4). �

Theorem 4.3. For distinct primes p and q that are 3 mod 4, (−1, p)Q is not

isomorphic to (−1, q)Q.

Proof. If (−1, p)Q
∼= (−1, q)Q, then q/p ∈ N−1(Q) by Theorem 3.17, so q/p =

x2 +y2 for some rational numbers x, y. Write x and y with a common denominator
x = m/d, y = n/d, with m,n, d ∈ Z and d 6= 0. Then

qd2 = p
(
m2 + n2

)
.

Since primes p 6= q, m2 + n2 ≡ 0 (mod q). That implies m and n are divisible by
q (because -1 is not a square mod q), so qd2 is divisible by q2, and thus q | d. In
the equation qd2 = p(m2 + n2), the numbers m,n, d are all divisible by q, so we
can divide through by q2 and get a similar equation where m,n, and d are replaced
by m/q, n/q, and d/q. Repeating this argument ad infinitum, d is divisible by
arbitrarily high powers of q, a contradiction. �

Remark 4.4. By the infinitude of primes, p, congruent to 3 mod 4, each forming
a quaternion algebra (−1, p)Q not congruent to any other (−1, q)Q, there are infin-
itely many non-isomorphic quaternion algebras over Q. In fact, since −1 is not a
quadratic residue modulo p when p ≡ 3 (mod 4), (−1, p)Q is a division ring.

Now we can establish some conditions on (a, b)Q to determine whether it is trivial,
or if it is a division ring.

Theorem 4.5. Let b be a prime number, and a be any quadratic non-residue mod
b, i.e. x2 ≡ a mod b has no solutions Z. Then the algebra A = (a, b)Q is a division
algebra.

Proof. Suppose A is not a division algebra, or, equivalently, A ∼= M2(F ). Then
∃ q ∈ A× with norm N(q) = x0 − ax2

1 − bx2
2 + abx2

3 = 0. We may assume that
x0, x1, x2, x3 have no common factors, since any common factor d may be factored
from each and preserve the equation for a new set of x′i = xi/d.

Considering this equation mod b, it follows that

x2
0 ≡ ax2

1 (mod b).

If b does not divide x1, then x2
1 is a quadratic residue mod b, and a product of a

quadratic residue and a quadratic non-residue is a quadratic non-residue, contra-
dicting our congruence relation. Thus, b | x1, and hence b | x0, showing x2

2 ≡ ax2
3
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(mod b). By the same argument, we have that b | x2 and b | x3, in contradiction
with our assumption. �

Example 4.6. The rings (2, 3)Q and (2, 5)Q are division rings since 2 is not a
quadratic residue modulo 3, nor modulo 5.
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