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Abstract. There are multiple methods of constructing R, and each way un-

veils unique mathematics surrounding the process. Thank you to D. E. Knuth
for the inspiration.
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1. Introduction

YouTube takes up much of my free time. I pride myself in having exhausted
every worthwhile science and math YouTube channel (namely, Veratasium, Min-
utePhysics, Numberphile, VSauce, Suckerpinch, Vihart, Computerphile, Singing-
banana, Carykh, ...). Still, I dislike the sentiment that many of my classmates
display when they watch an eight minute video about Electromagnetism and then
proclaim themselves experts in the subject. YouTube is powerful for inspirational
purposes, but if the video is illustrative and captivating, it is probably not too rigor-
ous. So when Numberphile debuted Donald Knuth and his book Surreal Numbers,
I wanted to learn more, and was inspired to purchase the book and learn more.
That and further readings have since caused me to reevaluate my understanding of
real analysis as well, because there seem to be so many constructions or character-
izations of R that are not as far-reaching as that from the surreal framework.

I had a lot of trouble finishing this paper because of my lack of focus. My favorite
quote from one of my readings came from Conway himself: “Only several weeks’
hard thought, sustained by the conviction that there must be a ‘genetic’ definition,
finally led to the ‘correct’ formula. The genetic definition of 1/x at the end of
Chapter 1 only appeared a year later.”

Date: May 22, 2017.
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2. Surreal Numbers

Donald Knuth created his small booklet about the Surreal Numbers in the style
of a dialogue between the wonderfully näıve, yet universally productive across many
fields, Alice and Bill. Their story is an organic reaction to some expository rock
dictating laws for the order relation ≤ and the condition of a number. Alice and
Bill struggle their way through the theory of surreal numbers: beginning in their
lowly skepticism of the process, but then becoming fascinated and anticipating
more than they realize. They find more definitions for addition, multiplication,
and such, and construct all of R, and more! The style of this book was purposefully
designed to teach the method of research to students, as a sort of antithesis to the
standard rigorous and linear style of modern textbooks and papers. Knuth uses this
start-from-the-bottom method to expose the natural inclinations for many people to
choose näıve approaches when first meeting a problem, but then with more practice
or experience, returning to old notes and revising to become more rigorous (or not
incorrect).

Take for example Alice and Bill’s desire to use the argument of day-sums to
prove many of their theorems. This was the initial proof to their T13.

Theorem 2.1 (T13). For any given x, y ∈ No such that x ≤ y, we have for any
z ∈ No,

x+ z ≤ y + z.

Incorrect Proof. This is equivalent to: given XL < y and x < YR, we must prove
that XL + z < y + z, ZL + x < y + z, x + z < YR + z, and x + z < ZR + y. By
day-sum induction, it follows. �

The problem with the above proof is that the induction method on day-sum
can only verify for sure the statement XL + z ≤ y + z, and so on; it’s conceivable
that xL < y but xL + z ≡ y + z. Therefore, we require the converse of T13:
if x + z ≤ y + z, then x ≤ y. Again, the converse is equivalent to being given
XL + z < y+ z, ZL + x < y+ z, x+ z < YR + z, and x+ z < ZR + y, and having to
prove that XL < y and x < YR. There may conceivably be a case in the induction
process where, say xL + z < y+ z but xL ≡ y. Such cases would be ruled about by
T13. Thus, we see a codependence between T13 and its converse.

Incorrect proof. Take the conjoined statement (T13 and T13′) can be proved by
induction on the day sum of (x, y, z). �

This proof seems legitimate, but it glosses over another case: when breaking the
statement ZL+x < y+z into its two necessary and sufficient cases: ZL+x ≤ ZL+y
and ZL + y < z + y. Induction provides the first step nicely, but the second part
involves (zL, z, y), which could have a larger day sum than (x, y, z).

Next is another attempt at proving T13.

Incorrect Proof. Bill arranges six statements to make his notation clear.

I x+ y is a number.
II if x ≤ y, then x+ z ≤ y + z.

III if x+ z ≤ y + z, then x ≤ y.
IV Combined statement of II and III.
V if x ≤ x′ and y ≤ y′, then x+ y ≤ x′ + y′.

VI if x+ y ≤ x′ + y′ and y ≤ y′, then x ≥ x′.
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We see items V and V I generalize items II and III, respectively. I(x, y) follows
from a list of other inductive statements: I(XL, y), I(x, YL), I(XR, y), I(x, YR),
III(XR, XL, y), III(x,XL, y), II(y, YR, x), III(y, YL, x), II(x,XR, y), III(YR, YL, x).
We actually see that the rest of the statements are independent of I, so we allow I
to be a corollary of the rest. We realize that the combined statement IV (x, y, z) de-
pends on IV (z, zL, y), which depends on IV (yR, y, z), which depends on IV (z, zL, y)
again. This loop cannot be broken. However, once we generalize to statements V
and V I, we see V (x, x′, y, y′) depends on V I(XL, x

′, y, y′), V I(YL, y
′, x, x′),

V I(x,X ′R, y, y
′), V I(y, Y ′R, x, x

′). Finally, to prove V I(x, x′, y, y′), we need,
V (x,X ′L, y, y

′), V (XR, x
′, y, y′). Now we can combine the statements with an “and”,

and by day-sum induction, they hold together! This proof even proves the state-
ments for all pseudo-numbers. �

There is beauty to the structure of this proof. However, when day-sums become
infinite, this proof does not hold. We can modify our day-sum arguments in the
following way: if a theorem fails for some x, then it also fails for some element xL
in XL, and then also fails in subsequent parts. But if each sequence is eventually
finite, as in if eventually we reach a case with XLLRLRR...RLLR being empty, then
the theorem can’t have failed for x. All we have to do now is show that there is no
infinite ancestral sequence of numbers x1, x2, x3, ... such that xi+1 is in XiL ∪XiR,
all with some undesired property. Actually, every pseudo-number is created out
of previously created ones. Whenever we create a new number x, we could prove
simultaneously that there is no infinite ancestral sequence starting with x1 = x,
because we have previously proved that there’s no infinite sequence that proceeds
from any of the possible choices of x2 in either XL or XR. We notice that rule (1)
is the axiom that provides the footing for this logic. And this explanation covers
(finite) multi-variable cases because for some (x, y, z), our proofs always involve a
permutation of the variables, as a permutation of the variables, where one is given
an extra L or R subscript. If there is a chain of infinite permutations, then there
has to be an infinite chain for one of the variables, a contradiction to rule (1). We
conclude with the realization of a difference between calculation and proof.

3. Classical Analysis

There are a few methods of constructing R that are taught to undergraduates
especially. I learned a method beginning with the Peano axioms for the natural
numbers Z+.

Axioms 3.1 (Peano). (N1) 1 ∈ Z+,
(N2) if n ∈ Z+, then n+ 1 ∈ Z+,
(N3) 1 is not a successor of any element in Z+, i.e. there exists no n ∈ Z+ such

that n+ 1 = 1,
(N4) if m,n ∈ Z+ and m+ 1 = n+ 1, then m = n,
(N5) if S ⊂ Z+ is such that 1 ∈ S and n ∈ S ⇒ n+ 1 ∈ S, then S = Z+.

Next, we construct another set of ordered pairs of elements of Z+, sorted into
equivalence classes based on the relation (m,n) ∼ (s, t) iffm+t = n+s. We label the
set of equivalence classes Z. Next, we construct Q =

{
m
n : m,n ∈ Z, n 6= 0

}
, where

m
n represents the equivalence class of the ordered pair (m,n) under the relation
(m,n) ∼ (s, t) iff mt = ns. It is easy to check that this is an equivalence relation,
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but the proof of the transitive property requires the use of the cancellation law for
integers.

Theorem 3.2 (Cancellation Law). Suppose that a, b, c ∈ Z, and c 6= 0. Then if
ac = bc, we have a = b.

Lemma 3.3. If a ∈ Z, then

(i) a · 0 = 0;
(ii) −(−a) = a.

Proof. For (i), we use distributivity:

a · 0 = a · (0 + 0) = a · 0 + a · 0.

Adding the inverse −(a · 0) to both sides gives the result.
For (ii), the statement is equivalently to proving (−a) + a = 0, but we have by
definition of additive inverse that a + (−a) = 0, so commutativity completes the
proof. �

Lemma 3.4. If a, b, c ∈ Z, then

(i) −a = a · (−1);
(ii) (−a) · b = −(a · b) = a · (−b);

(iii) (a− b) · c = a · c− b · c.

Proof. For (i), we want to show that a + a · (−1) = 0, but by the previous lemma
(i) and distributivity,

a+ a · (−1) = a · 1 + a · (−1) = a · (1 +−1) = a · 0 = 0.

Now for (ii), we apply (i) repeatedly

a · (−b) = a · (b · (−1)) = (a · b) · (−1) = −(a · b).

And the other way also follows.
For (iii), we apply part (ii) and distributivity

(a− b) · c = (a+ (−b)) · c = a · c+ (−b) · c = a · c+ (−(b · c)) = a · c− b · c.

�

Proof of Cancellation Law. We are given a · c = b · c, and the previous lemma (iii)
gives

0 = a · c− b · c = (a− b) · c.

The statement a = b is equivalent to a−b = 0. By trichotomy, there are three cases
to consider: positivity for a− b, positivity for −(a− b), or a− b = 0. We are given
c 6= 0, so either c is positive or −c is so. We can check one case and imply the rest
by symmetry. Suppose a− b is positive and c is positive. Then by closure (a− b) · c
is positive, contradicting that it is equal to 0. If a− b is positive and −c is positive,
then by the previous lemma (ii), we have (a− b) · (−c) = −((a− b) · c) is positive, so
again it is not zero. The two cases for −(a− b) > 0 are handled identically, and we
conclude that the only possibility is that a− b = 0, which implies (a− b) ·c = 0. �
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This constructive type of approach requires some axioms defining our opera-
tions. A synthetic approach to constructing the reals relies on finding the field(s)
satisfying the following axioms. We summarize some of the necessary axioms for
our operations, and go further than what was necessary, all to introduce +, ·. They
satisfy the field axioms.

Axioms 3.5 (Addition). (A1) x+ y = y + x for all x, y,
(A2) x+ (y + z) = (x+ y) + z for all x, y, z,
(A3) there exists an e = 0 such that x+ 0 = x for all x,
(A4) for all x, there exists x′ such that x+ x′ = 0.

Axioms 3.6 (Multiplication). (M1) x · y = y · x for all x, y,
(M2) x · (y · z) = (xy)z for all x, y, z,
(M3) there exists an e = 1 6= 0 such that x · 1 = 1 · x = x for all x,
(M4) for all x 6= 0, there exists x′ such that x · x′ = x′ · x = 1.

Axioms 3.7 (Distributive). (D1) x · (y + z) = x · y + x · z for all x, y, z.

Next, we impose the order axioms.

Axioms 3.8 (Order). (O1) For any two elements x, y, either x < y, x > y, or
x = y,

(O2) If x < y and y < z, then x < z,
(O3) If y < z, then x+ y < x+ z for all x,
(O4) If 0 < x, and 0 < y, then 0 < xy.

Finally, the distinguishing factor between R and a subfield such as Q comes from
the Dedekind-completeness axiom.

Axioms 3.9 (Completeness). (C1) Every nonempty subset S of the field we are
considering that is bounded above has a least upper bound supS in the field.

Definition 3.10. A Dedekind cut α is a subset of Q such that

• α 6= 0,Q;
• If p ∈ α and q ∈ Q satisfies q < p, then q ∈ α; and
• If p ∈ α, then p < r for some r ∈ α.

We can then define R := {α : α is a cut}. We order cuts α, β by the rule α < β
if and only if α ⊂ β strictly. We could check this is truly an order. Addition of cuts
occurs by taking

α+ β := {r + s : r ∈ α, s ∈ β} .
We could check this form is still a cut, and that addition satisfies the field properties.
If both cuts are positive (i.e. α, β > 0), then their product is

α · β := {p ∈ Q : p < r · s for some r ∈ α, s ∈ β} .
We define general multiplication in a tedious way.

• 0 · β = 0;
• α · 0 = 0;
• If α < 0, β > 0, α · β = − ((−α) · β);
• If α > 0, β < 0, α · β = − (α · (−β));
• If α < 0, β < 0, α · β = ((−α) · (−β));

We could check that multiplication satisfies the field axioms as well. Finally, we
can define the supremum of a group of cuts as the union: supα1, α2, ... =

⋃
αn.

We end with the conclusion that R is complete and our process terminates.
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4. Cauchy Sequences

Assume we have already constructed Q. The use of Cauchy sequences to con-
struct R is surprisingly fruitful if we can extend our construction to a more general
analysis of all possible absolute value functions on Q. However, let us begin with
the usual treatment.

Definition 4.1. A Cauchy sequence of rational numbers is a sequence (x1, x2, ...)
such that for every ε ∈ Q+ there exists Nε ∈ Z+ such that |xm − xn| < ε for all
m,n ≥ Nε.

One may show that every Cauchy sequence is bounded, and that Cauchy se-
quences may be added and multiplied straightforwardly. Also, all Cauchy sequences
have additive inverses, namely −(xn) = (−xn). So Cauchy sequences form a com-
mutative ring. However, only Cauchy sequences not equivalent to zero have multi-
plicative inverses. We define a Cauchy sequence (xn) as equivalent to zero if and
only if limn→∞ |xn| = 0. We can then define two Cauchy sequences (xn), (yn) as
equivalent if their difference is equivalent to zero. This is an equivalence relation
and allows us to add or multiply representatives that preserve convergence. Because
of this, the set of equivalence classes of Cauchy sequences forms a field. Finally, we
define R as this set, with Q embedded via the injection map [] : x 7→ [(x, x, x, ...)],
while extending the absolute value of Q to R via |[(xn)]| := [(|xn|)]. Notice
R+ = {x ∈ R \ {0} : |x| = x}, and R = −R+ t {0} t R+. Now that we have con-
structed R as a completion of Q with respect to Cauchy sequences from the typical
absolute value |·|, let’s focus on finding other completions of Q.

Definition 4.2. An absolute value function on the field k is ||·|| : k → R+, satis-
fying

• ||x|| = 0 iff x = 0;
• ||xy|| = ||x|| ||y||;
• ||x+ y|| ≤ ||x||+ ||y||.

A Cauchy sequence can be defined for any absolute value by replacing the con-
dition |xm − xn| < ε with ||xm − xn|| < ε.

Definition 4.3. The completion of a field k with respect to absolute value ||·|| is

the field k̂ of equivalence classes of Cauchy sequences of elements of k. We can

view k as a subfield of k̂ via the injective map [] : x 7→ [(x, x, x, ...)] and extend the

absolute value on k to k̂ by defining

||[(xn)]|| = [(||xn||)] = lim
n→∞

||xn|| ∈ R+.

Field k with absolute value ||·|| is called complete if every Cauchy sequence of
elements of k converges.

Lemma 4.4. Field k is dense in its completion k̂.

Proof. Given x = [(xn)] ∈ k̂ and some ε > 0, let r = xNε , where Nε is from the

definition of a Cauchy sequence. Then ||x− r|| < ε, or (ε− ||xn − r||)n ⊂ k̂ is a
Cauchy sequence. �

Theorem 4.5. Completion k̂ of field k with absolute value ||·|| has the property that

each Cauchy sequence (xn) of k̂ with strictly elements within the image of k under

the injective map [] converge to the element [(xn)] in k̂. Further, k̂ is complete.
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Proof. Let z = [(rn)] for Cauchy sequence of elements of k, (rn). Given ε > 0, let
Nε be as in the definition of Cauchy sequences. Then ||xn − z|| < ε for all n ≥ Nε.
Now, given a Cauchy sequence (xn), let (rn) be a sequence of elements from k such
that ||xn − rn|| < 1/n for all n. Finding such a sequence is possible because k is

dense in k̂. Then (rn) is Cauchy and limn→∞ ||xn − rn|| = 0. It follows that (xn)

converges to a number in k̂ if and only if (rn) does, and we know (rn) converges to

a number within k̂ from the first part of the theorem. �

Now let’s define a new instance of an absolute value on Q. Let p be a prime
number. Then we define the p-adic absolute value |·|p as |x|p := p−vp(x), where

vp(x) is the p-adic valuation of x. We will define vp(x) := ep, where ep comes from
the unique representation of any rational number x as a finite product of prime
powers:

x = ±
∏
p

pep ,

as guaranteed by the fundamental theorem of arithmetic.
We also put vp(0) := ∞ and define p−∞ := 0 so that |0|p = p−vp(0) = p−∞ = 0.

One can check that |·|p satisfies the qualities of a non-Archimedean absolute value

over Q, thus with the stronger inequality |x+ y|p ≤ max(|x|p , |y|p). (The trivial
absolute value is non-Archimedean, and the typical absolute value is essentially the
only Archimedean absolute value on Q).

To review, we defined R = Q̂, the completion of Q with respect to the absolute
value |·|. Similarly, we will denote with Qp the completion of Q with respect to |·|p.
We will also define the p-adic integers Zp :=

{
x ∈ Qp : |x|p ≤ 1

}
, which forms a

subring of Qp containing Z (closure follows from the non-Archimedean property).
Also, we see the p-adic absolute values are discrete; i.e., if r = |x|p, and for ε > 0

sufficiently small, the real interval (r − ε, r + ε) ⊂ R contains no p-adic absolute
values other than r. This is clearly true for x ∈ Q since vp(x) ∈ Z, but is also
true for all x ∈ Qp since Q is dense in Qp. This allows us to extend the valuation

vp(x) := − logp |x|p for any nonzero x ∈ Qp. Thus, x = pvp(x)u for some unit p-adic
number u.

This section ends by using a sequence of statements to show that the only non-
trivial completions of Q are R and every Qp. Alling’s paper shows how to prove that
every p-adic unit can be represented as a Cauchy sequence of integers; specifically,
as

x = (d0, d0 + d1p, d0 + d1p+ d2p
2, ...),

where each dn ∈ {0, ..., p−1} and d0 6= 0. The converse holds too. Therefore, Alling
decides to use the notation 0.d0d1d2...p to notate each p-adic unit, and explains all
other p-adic numbers are just powers of p off of some unit, justifying a shift in the
“decimal” point. This representation allows for the application of diagonalization,
proving each Qp is uncountable. One interesting example of how to represent a

p-adic number is −1 in Qp. Actually, −1 = 0.(p− 1)p, and this can be justified
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using the formula for a geometric series:

x = (p− 1) + (p− 1)p+ (p− 1)p2 + ...

= (p− 1)

(
1

1− p

)
= −1.

Another good example is trying to calculate the p-adic representation of
√
−1, say,

in Q5. Alling explains how to deduce the first digit simply by assuming
√
−1 =

0.d0d1d2...5 : (d0 + d15 + ...)2 =
√
−1

2
= 0.444. We see d0 = 2. Then we find d1:

0.4 = (2 + d15 + ...)2 = 4 + 4d15 + ...,

so d1 = 1. Continuing, we find
√
−1 = 0.212134230322041324.... The fact that√

−1 ∈ Q5 shows that Q5 is not isomorphic to R. Alling also describes the condi-
tions for finding rth roots of some integer z ∈ Qp, which I will leave out. Finally,
Alling provides proof of the following theorem.

Theorem 4.6. The nontrivial completions of Q are R and the p-adic fields Qp.

I could also provide the proof, but I believe the purpose of this paper is to study
how an argument is made, or how a paper is written, etc. So I will provide you
with my synopsis of the proof. Alling first makes clear some universal truths about
an arbitrary absolute value on Q. Namely, ||±1|| = 1, and for some distinct p, q
primes,

||p||n ≤ (m+ 1)qmax(||q|| , ||q||m),

where m = dlogq p
ne. Alling then breaks the proof into two cases; we see

max(||q|| , ||q||m) is present because ||p|| may be less than or more than 1. The first
case considers the existence of at least one prime p such that ||p|| > 1. It follows
that ||q|| > 1 for all other prime q. We then use our inequality to establish an
inequality version of the line below, but it works in both directions by symmetry
of the argument, converting it to the equality:

log ||p||
log p

=
log ||q||

log q
.

Thus, let α = log||p||
log p , meaning for any prime, ||q|| = |q|α; then ||x|| = |x|α for any

x ∈ Qp \ {0}. Alling states that a sequence of rational numbers is Cauchy with
respect to the absolute value ||·|| = |·|α if and only if it is also Cauchy with respect to
|·|, meaning the completion of Q in this case is isomorphic to R. In the second case,
we suppose no prime p has the property ||p|| > 1. If all primes have absolute value
1, then we have the trivial absolute value with the trivial completion. Otherwise,
there exists some prime p such that ||p|| < 1. Alling shows that if this case, all
other primes have absolute value 1. He does this by assuming the existence of
another prime with the same property ||q|| < 1, and by making use of some number
theoretic facts, concluding with a contradiction that 1 < 1. Thus, because of the

multiplicativity of absolute value, ||x|| = ||p||vp(x), only depending on p, for any
nonzero x ∈ Q. Writing ||p|| = p−α for some α > 0 gives ||x|| = |a|αp . Thus, we get

exactly the same equivalence classes of Cauchy sequences using ||·|| = |·|αp as we do

with |·|p, meaning the completion of Q is with respect to ||·|| is Qp, completing the
proof.



CONSTRUCTING REALITY MAY 9

Alling makes some concluding remarks: While the fields R and Qp are complete
topologically, they are still incomplete algebraically, as they are missing solutions to
some polynomial equations. Taking the algebraic closure of R is as easy as adding
the element i =

√
−1; together with R this yields the field C, which is still complete

with respect to the Archimedean absolute value. However, things are not as simple
for p-adic spaces, because after taking the algebraic closure of Qp, we yield a space

Qp which is no longer complete. Taking another Cauchy completion of this spaces
yields Cp, which is still algebraically closed. Like C, Cp is the smallest extension
of Q that is both closed and complete with respect to the extension of an absolute
value on Q.

5. The Logical Theory of Real Numbers

I found this diagram in Conway’s On Numbers and Games, where it was used
to describe the methods of constructing R.

R

R+ Q

Q+ Z

Z+

If we suppose Z+ already constructed, then we have
(
3
2

)
= 3 possible paths to-

wards constructing R. Conway claims the best path is to follow Z+ → Q+ → R+ →
R. The process of constructing X = Z,Q,R from X+ involves the introduction of
ordered pairs (a, b) (which we may interpret as a− b) and the equivalence relation
(a, b) ∼ (c, d) iff a + d = b + c. There is an alternative approach to adding 0 and
−x but that requires case work, which we aim to avoid.

Similarly, we can proceed from Z to Q or Z+ to Q+ by introducing ordered pairs
(a, b) (which we may interpret as a/b) and the equivalence relation (a, b) ∼ (c, d) iff
ad = bc. The usual methods of proceeding from Q to R or their positives include the
use of Dedekind cuts or Cauchy sequences. Dedekind cuts require at least 4 special
cases in the definition of the product xy based on the signs of x, y ∈ Q. Moreover, 0
requires its own statements. Thus, we would have 8 cases in proof of the associative
law (xy)z = x(yz) and strictly more in the distributive law (x+ y)z = xz + yz.

Because of this, case handling using Dedekind cuts seems to arise when sign is
introduced, so we intend to prolong the introduction until the end, thus justifying
following the unique path through R+ → R. Conway expresses the opinion that
Cauchy sequences are much too heavy of weaponry for simply constructing R out
of Q. He believes sequences belong to real analysis, which only begins after R is
constructed!

However, there are disadvantages to considering the surreal approach. One,
ironically, is the relative fruitfulness of the process. The process never seems to
stop after constructing R. Conway shows in a paper of his that the surreal numbers
form the Field No, a proper class and real, closed field, with a very high level of
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density, which can be descried by extending Hausdorff’s nξ condition. No is totally-
ordered and non-Archimedean, meaning the relation of ≤ is partial: reflexive, anti-
symmetrical, and transitive; for all x, y, either x ≤ y or y ≤ x; and we do not
have the Archimedean property that given any g, h > 0, there exists some n ∈ Z+

such that ng > h and nh > g. Conway suggests the cure to this is adding to the
construction a stipulation: if L is non-empty but with no greatest member, then
R is non-empty with no least member, and vice versa. This condition gives us a
unique real number x = supL = inf R, and nothing greater than some integer, for
example. There are some further disadvantages, one being the special treatment
of the dyadic rationals, and the inductive definitions of 1/x,

√
x, .... He explains

that this prevents him from teaching undergraduates this as “the” theory of real
numbers, but he does provide one last suggestion.

Conway’s surreal numbers define addition and multiplication in the follow ways.

x+ y =
{
xL + y, x+ yL : xR + y, x+ yR

}
,

xy = {xLy + xyL − xLyL, xRy + xyR − xRyR |
| xLy + xyR − xLyR, xRy + xyL − xRyL}.

On day ω, all non-dyadic real numbers are born. For example,

1

4
<

1

4
+

1

16
<

1

4
+

1

16
+

1

64
< ... <

1

3
< ... <

1

2
− 1

8
<

1

2
,

so we might expect that
{

1
4 ,

1
4 + 1

16 ,
1
4 + 1

16 + 1
64 , ... : 1

2 ,
1
2 −

1
8 , ...

}
= x = 1

3 . In
fact, one can check that x + x + x = 1. Similarly, all of the real numbers defined
by Dedekind including all of the remaining rational numbers may be defined as
Dedekind sections or cuts of the dyadic rational numbers, rather than as sections
of all rationals. Now for any dyadic rational such as 3

8 may be represented as{
dyadic rationals <

3

8
: dyadic rationals >

3

8

}
,

and 3
8 =

{
1
4 : 1

2

}
, meaning all dyadic rationals recreated on day ω are the equal to

those created in preceding days.
Conway suggests beginning with a classical approach up to and including Q. All

rational numbers, when viewed in surreal form, are sections of dyadic rationals.
We then define the reals as sections of Q with the definitions of addition and
multiplication provided, and then all the formal laws have “1-line” proofs and there
is no case-splitting.

6. Rambling Echos

I used the opportunity of writing this paper to more purposefully analyze how
an author organizes content, especially in how an argument is structure to prove a
statement. Alling’s paper especially helped in this front, and I had similar training
in preparing my Algebra final for the MASS program last semester on Quaternion
Algebras.
I’ve had a lot of professors already in my two years “at university.” Each one enjoys
spouting tidbits of wisdom on how to best present information. My professor for
topology, Prof. Anton Petrunin, is someone from whom I could not only hear wis-
dom in the classroom, but someone I could find online. MathOverflow allows me to
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see his account, his activity, his comments, his posts, his influence on the entire com-
munity. He seems to primarily promote ideas of free dissemination of information
between colleagues. It is astounding how some middle-state, average, agricultural
university could host some of the many most important mathematicians. Professor
Petrunin would frequently drive a point about writing mathematics: sometimes
authors become fixated on being perfectly rigorous and detailed in their writing;
but the point of writing in mathematics is to say enough so that the reader under-
stands, and then nothing more!
The majority of my professors favor accurate, organized, and terse writing for tech-
nical pieces. This is far from that, but is meant to prepare me for it. A post-doctoral
student, John Pretz, was the first person I found at Penn State to help me with my
writing. The thing he said that best stuck with me read along the lines of “if you
can read this sentence the same way as before after taking out this one word, then
take it out.” That extinguished my liking towards “certainly” or “however.”
Professor Svetlana Katok favored all of the aspects I already mentioned, but also
valued content. Paragraphs filled with bluff or little new information were super-
fluous in her mind. It is a view with which I agree, although my idea of new
information might be more liberal compared to her’s.
Knuth wanted to highlight the process of creating content in his book, and I think
having reread this book twice has allowed me to appreciate the process, especially
after having also read so many technical papers in the past year. Textbooks at-
tempt to derive and motivate their topics, but they still lack the discovery and
thought-intensive troubleshooting sessions. All I do is troubleshoot, really. And
shoot, I have got plenty of troubles.
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