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1. Introduction

This paper was inspired by a video by Terence Tao. Much of these notes were
compiled from Karen R. Johannson from University of Manitoba. This subject was
something I never realized had so much attention, and it seems like some of the best
mathematicians flock to this subject. I want to do more with this in the future.

2. Erdős Discrepancy Problem

One notoriously difficult problem that required a very unique and groundbreak-
ing approach to solve by Terence Tao in 2016 is the Erdős Discrepancy Problem,
analyzing boundedness on homogeneous sums in the range {−1, 1}.

Problem 2.1. Given infinite sign sequence (f(j))
∞
j=1 ⊂ {−1, 1}, and any d ∈ N,

are the following sums always unbounded?
∞∑
j=1

f(jd).

Equivalently, given any C ≥ 0, we ask if there exists N > 0 such that for every sign

sequence (f(j))
N
j=1 ⊂ {−1, 1},∃d, k ∈ N such that∣∣∣∣∣∣

k∑
j=1

f(jd)

∣∣∣∣∣∣ ≥ C.
Now I will begin an exposition into solving for the corresponding N for small

values of C.
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Definition 2.2. Sign sequence f(1), f(2), ..., f(n) ∈ {−1, 1}, or discrete function
f : [1, n] → {−1, 1} is well distributed with respect to C ∈ N if and only if ∀d ∈
{1, ..., n} and k ∈

[
1,
⌊
n
d

⌋]
, ∣∣∣∣∣∣

k∑
j=1

f(jd)

∣∣∣∣∣∣ < C.

Definition 2.3. Integer n ∈ N is well distributive with respect to C ∈ N if and
only if ∃f : [1, n]→ {−1, 1} that is well distributed with respect to C.

Lemma 2.4. If ∃N ∈ N that is not well distributive with respect to fixed C ∈ N,
then ∀n > N , n is not well distributive with respect to C.

Proof. Suppose n > N is well distributive with respect to C, i.e. ∃f ′ : [1, n] →
{−1, 1} that is well distributed with respect to C. Then ∀d′ ∈ [1, n] ⊃ [1, N ] and
k′, ∣∣∣∣∣∣

k′∑
j=1

f ′(jd′)

∣∣∣∣∣∣ < C.

However, f := f ′|[1,N ] is thereby well distributed with respect to C as ∀d ∈ [1, N ]

and k, ∣∣∣∣∣∣
k∑
j=1

f(jd)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k′∑
j=1

f ′|[1,N ] (jd′)

∣∣∣∣∣∣ < C,

for corresponding d′ = d, k′ = k. Obviously, we have a contradiction. �

Lemma 2.5. If ∃N ∈ N that is well distributive with respect to fixed C ∈ N, then
∀n ∈ [1, N ], n is well distributive with respect to C.

Proof. We have N is well distributive with respect to C, so ∃f : [1, N ] → {−1, 1}
that is well distributed with respect to C. Then ∀d ∈ {1, ..., N} and k,∣∣∣∣∣∣

k∑
j=1

f(jd)

∣∣∣∣∣∣ < C.

If n < N , we notice that f ′ := f |[1,n] is also well distributed with respect to C,

since ∀d′ ∈ [1, n] ⊂ [1, N ] and k′, we have corresponding d = d′ and k = k′ such
that ∣∣∣∣∣∣

k′∑
j=1

f ′(jd′)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
k∑
j=1

f |[1,n] (jd)

∣∣∣∣∣∣ < C.

�

From the last two lemmas, we know that for any mapping f : N → Z, f may
only be well distributed with respect to any C ∈ N over the integers 1, 2, ..., N ,
where N could be finite or ∞ in principle. The Erdős Problem asks whether N
is always finite. There are a few known results in this vein. First, if C = 1, any
sign sequence of length n = 1 guarantees the sum having magnitude equal to C,
so N = 0. Next, we will see N = 11 is the largest well distributive number with
respect to C = 2.

Example 2.6. Prove N = 12 is not well distributive with respect to C = 2.
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Proof. Suppose ∃f : [1, 12] → {−1, 1} such that f is well distributed with respect
to 2. Then let us assume f(1) = a ∈ {−1, 1}. As a bit of notation, we will consider
inequalities including sums of the form∣∣∣∣∣∣

k∑
j=1

f(jd)

∣∣∣∣∣∣ < 2,

and shorten the statement of this inequality to (k, d). First, we notice (2, 1) implies
f(2) = −a, or else |f(1) + f(2)| = |2a| = 2, which is not less than C = 2. We
continue this chain of arguments in a Sudoku-like fashion:

(2, 2)⇒f(4) = −f(2) = a

(2, 4)⇒f(8) = −f(4) = −a
(4, 2)⇒f(6) = −f(8) = a

(2, 3)⇒f(3) = −f(6) = −a
(6, 1)⇒f(5) = −f(6) = −a
(8, 1)⇒f(7) = −f(8) = a

(2, 5)⇒f(10) = −f(5) = a

(1, 10)⇒f(9) = −f(10) = −a
(2, 6)⇒f(12) = −f(6) = −a.

However, (4, 3) ⇒ f(12) = −f(9) = a. This is a contradiction, and thus 12 is not
well distributive with respect to C = 2. �

Corollary 2.7. A natural observation from this proof is that we can construct
f : [1, 11] → {−1, 1} that is well distributed with respect to C = 2. Notice we
showed in the previous proof that such an f must satisfy

a =f(1) = f(4) = f(6) = f(7) = f(10),

−a =f(2) = f(3) = f(5) = f(8) = f(9).

Because 11 is prime and over half of 12, only (k = 11, d = 1) can imply the value
of f(11). But notice f(11) = ±1 works since∣∣∣∣∣∣

11∑
j=1

f(j)

∣∣∣∣∣∣ = |0 + f(11)| = |±1| = 1 < 2.

Thus, we have four possible functions over [1, 11] that are well distributed with
respect to C = 2, corresponding to choices from a = ±1 and f(11) = ±1.

According to Alexei Lisitsa and Boris Konev of the University of Liverpool,
N = 1160 is the maximal integer that is well distributive with respect to C = 3.
For C = 4, the maximal well distributive integer is definitely greater than 130, 000.

3. Näıve Proofs

One cute and näıve result in infinite sums relates to the misunderstood extension
of the Riemann-Zeta Function. First, we begin with the function f : N→ {−1, 1},



4 RAYMOND FRIEND

such that f(n) = (−1)n−1. We take the sum∑
n∈N

f(n) =

∞∑
n=1

(−1)n−1 = 1− 1 + 1− 1 + ....

Let’s denote the value of this sum as S1 = 1− 1 + 1− 1 + .... Then let’s add S1 to
itself in a shifted manner:

S1 = 1− 1 + 1− 1 + 1− 1 + ...

+S1 = 0 + 1− 1 + 1− 1 + 1− ...
⇒ 2S1 = 1 + 0 + 0 + 0 + ... = 1.

We achieve S1 = 1
2 . Furthermore, we can use this to imply more. For instance, if

we denote S2 = 1 − 2 + 3 − 4 + 5 − 6 + ..., then we can solve for the value of S2

performing a similar trick

S2 = 0 + 1− 2 + 3− 4 + 5− 6 + ...

+S2 = 1− 2 + 3− 4 + 5− ....
⇒ 2S2 = 1− 1 + 1− 1 + ... = S1.

Thus, S2 = 1
4 . Finally, if we denote S3 = 1 + 2 + 3 + 4 + 5 + 6 + ..., then we perform

S3 = 1 + 2 + 3 + 4 + 5 + 6 + ...

−S2 = −1 + 2− 3 + 4− 5 + 6− ....

⇒ S3 +
1

4
= 0 + 4 + 0 + 8 + ... = 4S3.

Thus, S3 = 1 + 2 + 3 + 4 + 5 + ... = − 1
12 . Obviously, this connects to the most basic

definition of Riemann’s ζ function, but is an invalid process to obtain the result
since we assumed each sum had a determined final value.

4. Ramsey’s Theorem

Definition 4.1. An arithmetic progression of length k ≥ 3 is a sequence of k
numbers of the form a, a+ d, a+ 2d, ..., a+ (k − 1)d, and denoted APk.

We think of grouping the elements of a set by a partition and into partition
classes. We generally call Ramsey theory the study of structures preserved under
partition. A density result known as Szemerédi’s theorem states that for any k ≥ 3
and ε ∈ (0, 1), ∃n ∈ N such that S ⊂ [1, n]εn (subset of size εn) will contain a k-term
arithmetic progression. For any set A and finite set B, any function ∆ : A→ B is
called a finite coloring or finite partition of A. There are

∣∣{∆−1(b) | b ∈ B
}∣∣ many

partition/color classes. The pigeonhole principle says that if n, r ∈ N, then for every
r-coloring ∆ : [1, nr + 1]→ [1, r], there exists i ∈ [1, r] so that

∣∣∆−1(i)
∣∣ ≥ n+ 1.

Theorem 4.2 (Ramsey, 1930). For every k,m, r ∈ N with k ≤ m, there exists
integer n ∈ N so that for any set S with |S| = n and any r-coloring ∆ : [S]k → [1, r]
there is a set T ∈ [S]m such that [T ]k is monochromatic; i.e. ∃i ∈ [1, r] such that
i = ∆(t) for all t ∈ [T ]k.

Raysey’s Theorem states if there is a finite coloring from the collection of k-
subsets of some S, then there is some set T from the collection of larger subsets of
S such that the coloring applied to each k-subset of T produces the same color.
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Definition 4.3. For non-empty V and E ⊂ V 2, the pair G = (V,E) is called a
graph. Elements of V are vertices and thsoe of E are edges. The neighborhood of
v ∈ V is N(v) = {x ∈ V | {x, v} ∈ E}.

We call G complete if E = V 2. We will denote the complete graph of n vertices
with Kn.

Definition 4.4. Given graph G = (V,E), any graph G′ = (V ′, E′) with V ′ ⊆ V
and E′ ⊆ E ∩ [V ′]2 is called a subgraph of G.

We can explore the m = 2 case of Ramsey’s theorem using graph theory.

Theorem 4.5. For every k, r ∈ N,∃R(k; r) such that for all n ≥ R(k; r) and for
any r-coloring of the edges of Kn, there is a complete subgraph G on k vertices such
that E(G) is monochromatic.

Definition 4.6. Let r, k1, k2, ..., kr ∈ N, and denote R(k1, k2, ..., kr) the least in-
teger N , if it exists, such that for every n ≥ N and any r-coloring of the edges of
Kn, there is an i ∈ [1, r] such that Kn contains a subgraph Kki whose edges are
monochromatic in color i.

If every R(k1, k2, ..., kr) exists, then the Ramsey number R(k; r) = R(k, k, ...k; r)
exists as well. We claim R for r positive integer arguments is invariant up to
permutation.

Lemma 4.7. Let k1, ..., kr ∈ N be such that R(k1, ..., kr) exists. For any permuta-
tion σ ∈ Sr, R

(
kσ(1), ..., kσ(r)

)
= R(k1, ..., kr).

Proof. Set N = R(k1, ..., kr), and let ∆ be any r-coloring of E(KN ). Define
a new r-coloring ∆′ of the edges of KN as follows. For {x, y} ∈ E(KN ), set
∆′({x, y}) = σ(∆({x, y})). By the choice of N , for some i ∈ [1, r], there is Kk that
is monochromatic under ∆′ in the color i; i.e. ∀x, y ∈ V (Kki), σ(∆({x, y})) = i.
Let j = σ−1(i). Then Kki = Kkσ(j) is a complete graph under ∆ of color j. �

A form of recursion known as Erdős-Szekeres recursion was employed to prove
Ramsey’s theorem and discussed finding convex k-gons from any collection of N
line-free sets.

Theorem 4.8 (Erdős-Szekeres Recursion). For all integers r ≥ 2 and k1, k2, ..., kr ≥
3,

R(k1, k2, ..., kr) ≤R(k1 − 1, k2, ..., kr) +R(k1, k2 − 1, ..., kr)

+ ...+R(k1, k2, ..., kr − 1)− r + 2.

Proof. For each i ∈ [1, r], define Ni = R(k1, ..., ki− 1, ..., kr) and let N = N1 + ...+
Nr − r + 2. We claim R(k1, ..., kr) ≤ N . Let ∆ be any r-coloring of the edges KN .
Fix x ∈ V (KN ) and for each i, define

Vi = {y ∈ V (KN ) | ∆({x, y}) = i} .

Then Vi ⊂ N(x) is all edges in neighborhood of x colored i by ∆. Then ∃` ∈ [1, r]
such that |Vi| ≥ Ni. Otherwise,(

r∑
i=1

Ni

)
− r + 2 = 1 +

r∑
i=1

|Vi| ≤ 1 +

r∑
i=1

(Ni − 1) =

(
r∑
i=1

Ni

)
− r + 1,
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a contradiction. Fix ` such that |V`| ≥ N`. The coloring ∆ induces an r-coloring
of the complete graph on the vertices of V` and so by the choice of the number
N` = R(k1, ..., k` − 1, ..., kr), either for some j ∈ [1, r] \ {`}, V` contains a Kkj with
edges all color j, or else V` contains a Kk`−1 with edges all color `. In the latter,
the vertices of the complete Kk`−1 together with the vertex x form the vertices of
a complete graph on k` vertices all of whose edges are color ` since all of the edges
between x and V` are of color ` by construction of V`. �

Corollary 4.9. Every R(k1, ..., kr) exists for all r, k1, ..., kr ∈ N.

Proof. We check the necessary base cases for double induction on r and k1+ ...+kr.
For r = 2 and k ∈ N, R(k, 2) = k since for any 2-coloring of the edges of the complete
graph Kk, there is either one edge (K2) of one color or else all edges of the graph
Kk are of the other color. Similarly, if k1, ..., kr−1 ∈ N, then R(k1, ..., kr−1, 2) =
R(k1, ..., kr−1) (Check for yourself). The previous lemma and theorem then both
imply each R(k1, ..., kr) exists. �

Remark 4.10. Actually, we can place the numerical bound when k,m ≥ 2: R(k,m) ≤(
k+m−2
k−1

)
, and it follows from the recursion of the previous theorem. Base case

R(k, 2) = k =
(
k+2−2
k−1

)
. Then by the Erdős-Szekeres Recursion theorem,

R(k,m) ≤ R(k − 1,m) +R(k,m− 1)− 2 + 2 ≤
(
k +m− 3

k − 2

)
+

(
k +m− 3

k − 1

)
= (k +m− 3)!

[
1

(k − 2)!(m− 1)!

k − 1

k − 1
+

1

(k − 1)!(m− 2)!

m− 1

m− 1

]
=

(k +m− 3)!

(k − 1)!(m− 1)!
[k +m− 2] =

(
k +m− 2

k − 1

)
.

5. Schur’s Theorem

Theorem 5.1. For every r ∈ N there is a least positive integer S(r) such that for
any r-coloring ∆ : [1, S(r)]→ [1, r], there exist x, y ∈ [1, S(r)], possibly with x = y,
such that ∆(x) = ∆(y) = ∆(x+ y).

Proof. Let r ∈ N and set n = R(3; r)−1. To see that S(r) ≤ n, let ∆ : [1, n]→ [1, n]
be any r-coloring and consider the graph Kn+1 on vertices 0, 1, ..., n with an edge
coloring defined as follows. For 0 ≤ i < j ≤ n,

∆∗({i, j}) = ∆(j − i).

With this choice of i and j, j− i ∈ [1, n] and thus ∆∗ is well-defined. By the choice
of n, there is a triangle in Kn+1 which is monochromatic under ∆∗. Thus, in terms
of ∆, there are 0 ≤ a < b < c ≤ n such that

∆(b− a) = ∆(c− b) = ∆(c− a) = ∆((b− a) + (c− b)).

If x = b− a, y = c− b, z = c− a, we see ∆(x) = ∆(y) = ∆(z = x+ y). �

This proof places a bound on S(r) ≤ R(3; r) − 1, but the original proof of this
theorem, which did not use Ramsey’s theorem, found the better bound S(r) ≤ er!.
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6. Van der Waerden’s Theorem

Theorem 6.1 (Van der Waerden). For all N ∈ N and f : N→ [1, N ] and for any
k ∈ Z, ∃i ∈ [1, N ] and integers a, d > 0 such that

{a, a+ d, a+ 2d, ..., a+ (k − 1)d} ⊂ f−1(i).

For all possible ways of splitting the natural numbers into N groups, at least one
group will contain an arithmetic progression of any specified length k.

Equivalently,

Theorem 6.2 (Van der Waerden, Alt.). For every k, r ∈ N, there is an integer n
such that for every r-coloring of [1, n], there is a monochromatic APk.

Remark 6.3. There is no similar result for infinite arithmetic progressions. One
example that expresses this notion is the 2-coloring of N defined by ∆(n) = blog2 nc
(mod 2). For this coloring, the interval

[
2i, 2i+1 − 1

]
is of color 0 if i is even, and

of color 1 otherwise. Both classes contain arbitrarily long arithmetic progressions
with finitely many terms, but no infinite arithmetic progressions.

Lemma 6.4. For any n ∈ N and k > 1, the number of APk in [1, n] is less than
n2

2(k−1) .

Proof. For any integer d ∈
[
1, n−1k−1

]
, the arithmetic progressions in [1, n] with dif-

ference d are {1, 1 + d, ..., (k− 1)d}, ..., {n− (k− 1)d, ..., n}. So the number of APk
with difference d is n− (k − 1)d. Therefore, the total number of APk contained in
[1, n] is

bn−1
k−1 c∑
d=1

(n− (k − 1)d) =

⌊
n− 1

k − 1

⌋
n− (k − 1)

(⌊n−1
k−1

⌋
+ 1

2

)
=

⌊
n− 1

k − 1

⌋
1

2

(
2n− (k − 1)

(⌊
n− 1

k − 1

⌋
+ 1

))
≤ n− 1

2(k − 1)
(2n− (n− 1))

=
(n− 1)(n+ 1)

2(k − 1)

<
n2

2(k − 1)
.

�

While working at Hamburg in 1926, Bartel van der Waerden apparently shared
a conjecture from Baudet in Göttingen on arithmetic progressions with Artin and
Shrier. It was likely due to Schur originally, and stated that for every k ≥ 3, any
partition of N into two classes will contain an APk. We claim Theorem 6.2 is
equivalent to the original conjecture. But we need some preliminaries to prove this.

Definition 6.5. For every k, r ∈ N let W (k; r) be the least integer, if it exists, so
that for every r-coloring of [1,W (k; r)], there are a, d ∈ N so that the arithmetic
progression of length k starting at a is monochromatic. The numbers W (k; r) are
called van der Waerden numbers.
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Lemma 6.6 (Schrier). Fix r, k ∈ N. The integer W (k; r) exists if and only if for
every r-coloring of N, there is a monochromatic APk.

Proof. Obviously, ifW (k; r) exists, then for every r-coloring of N there is a monochro-
matic APk since [1,W (k; r)] ⊆ N.
Conversely, we will prove the contrapositive. Suppose W (k; r) does not exist. Then
for every n ∈ N, there is an r-coloring ∆n for which [1, n] contains no monochro-
matic APk. These r-colorings are used to construct an r-coloring of N with no
monochromatic APk. Recursively build a sequence of colors {cn}n∈N and a se-
quence of infinite sets A1 ⊇ A2 ⊇ ... as follows.
Since there are only finitely many colors, one color must occur infinitely many
times in the sequence {∆1(1),∆2(1), ...}. Let c1 ∈ [1, r] be such that A1 =
{i ∈ N | ∆i(1) = c1} is infinite. In general, for t ≥ 1, having defined the infinite
set At, there must be one color, ct+1, that occurs infinitely many times in the se-
quence {∆i(t+ 1) | i ∈ At}.
Now we define a new coloring ∆ : N→ [1, r] by ∆(n) = cn. Note that for m,n ∈ N,
if n ∈ Am, then ∆n|[1,m] = ∆|[1,m] by the definition of ∆ and the choice of the set

Am. For each n ∈ N, there are no APk which are monochromatic under ∆n and so
N also does not contain any APk which are monochromatic under ∆. �

Lemma 6.7. Fix k, r ∈ N, and suppose that the number n = W (k; r) exists and
let P = {a, a+ d, ..., a+ (n− 1)d} be any APn. Then for any r-coloring of P , there
is a monochromatic APk ⊂ APn.

Proof. Let ∆ : P → [1, r] by any r-coloring. Define an induced r-coloring ∆∗ :
[1, n] → [1, r] by ∆∗(i) = ∆(a + d(i − 1)). By the choice of n, there is an APk:
{c, c + b, ..., c + (k − 1)b} that is monochromatic under ∆∗. In terms of ∆, for
each 0 ≤ i ≤ k − 1, ∆∗(c + ib) = ∆(a + d(c + ib − 1)). Therefore, the APk:
{a+ d(c− 1), (a+ d(c− 1)) + db, ..., (a+ d(c− 1)) + (k − 1)db} is monochromatic
under ∆. �

Lemma 6.8 (Blocks). Suppose that for some k, r, n ∈ N, that W (k; rn) = N exists.
For any r-coloring ∆ : [1, nN ] → [1, r], there exists an APk of blocks, each block
of length n, all with the same color pattern under ∆, were an APk of blocks is a
sequence B1, ..., Bk such that ∃d > 0 so that for each i ∈ [2, k], Bi = B1 + (i− 1)d.

Proof. For each i ∈ [1, N ], set Bi = [1 + (i − 1)n, in]. Let ∆ : [1, nN ] → [1, r] be
any r-coloring and define the induced rn-coloring ∆∗ : [1, N ]→ ([1, r])

n
by

∆∗(x) = (∆(1 + (x− 1)n),∆(2 + (x− 1)n), ...,∆(xn))

where each color under ∆∗ is an n-tuple. Since N = W (k; rn), [1, N ] contains APk:
{a, a + d, ..., a + (k − 1)d} which is monochromatic under ∆∗. In terms of ∆, this
means that the blocks Ba, Ba+d, ..., Ba+(k−1)d form an APk of blocks of length n,
with difference nd, for which all members have the same color pattern under ∆. �

Lemma 6.9 (Artin). If for all k ∈ N, W (k; 2) exists, then for all k ∈ N, r ≥ 2, the
van der Waerden number W (k; r) exists.

This lemma reduces the existence of van er Waerden numbers to the existence
of van der Waerden numbers for 2-colorings.

Proof. We prove this by induction on r. The base case r = 2 is true by assumption.
Fix k ∈ N and suppose that r ≥ 3 is such that W (k; r − 1) exists. Set m =
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W (k; r − 1) and n = W (m; 2). In order to show that W (k; r) ≤ n, let ∆ : [1, n]→
{01, 02, ..., 0r−1, 1} be any r-coloring. Define an induced 2-coloring ∆∗ : [1, n] →
[0, 1] by

∆∗(i) =

{
0 if for some j,∆(i) = 0j ;

1 if ∆(i) = 1.

If [1, n] contains an APm under ∆∗ of color 1, then since the APm will also be of
color 1 under ∆, [1, n] contains a monochromatic APk since k ≤ m.
Otherwise, by the choice of n, there is an APm, denoted P , which is of color 0 under
∆∗. Thus, ∆ restricted to P is an (r − 1)-coloring and since m = W (k; r − 1), by
the previous lemma, P contains an APk which is monochromatic under ∆. �

Theorem 6.10 (Brown and Rabung). Let M ∈ N be such that for every (M − 1)-
coloring of N, at least one color class contains arbitrarily long arithmetic progres-
sions. Let S = {si})i ≥ 0 be strictly increasing sequence such that for all i ≥ 0,
|si+1 − si| ≤M . Then S contains arbitrarily long arithmetic progressions.

Proof. Define a partition of N into M disjoint sets as follows. Set A0 = S and for
each n ∈ [1,M − 1], set

An = {si + n | i ≥ 0} \

n−1⋃
j=0

Aj

 .

Since for all i ≥ 0, |si+1 − si| ≤ M , the sets A0, ..., AM−1 define a partition of
N. By assumption, there is one n ∈ [1,M − 1] so that An0

contains arbitrarily
long arithmetic progressions, or for each k ∈ N, there are a, d ∈ N so that {a, a +
d, ..., a + (k − 1)d} ⊆ An0

⊆ S + n0. Therefore, the k-term arithmetic progression
{a− n0, a− n0 + d, ..., a− n0 + (k − 1)d} is contained in S. �

Corollary 6.11 (Rabung). If, for every finite coloring of N, one color class con-
tains arbitrarily long arithmetic progressions, then for any partition of N into 2
classes, either one class contains arbitrarily long strings of consecutive numbers or
else both classes contain arbitrarily long arithmetic progressions.

Proof. Let N = A1 ∪ A2 be any partition. If for some M ∈ N, the longest string
of consecutive integers in A1 is of length M , then for any two consecutive entries
a < b in A2, |b− a| ≤ M + 1. Therefore, if neither A1 nor A2 contain arbitrarily
long strings of consecutive numbers, then both A1 and A2 satisfy the conditions of
Theorem 6.10 and hence contain arbitrarily long arithmetic progressions. �

Finally, we can perform the proof that the van der Waerden numbers exist.

Theorem 6.12. For each k, r ≥ 2, W (k; r) exists.

Proof. We perform induction on k with a recursive construction in r steps. Fix
r ≥ 2. By the pigeonhole principle, W (2; r) = r+ 1. Now we fix k ≥ 2 and suppose
that for all t ≥ 2, the number W (k; t) exists. The following inductive step shows
that W (k + 1; r) exists. Set q0 = 1 and for each s ∈ [1, r], define

ns−1 = W (k; rqs−1 and qs = 2ns− 1qs−1.

The goal of the proof is to show that W (k + 1; r) ≤ qr. Fix an r-coloring ∆ :
[1, qr]→ [1, r]. using the choices of ns and qs, a sequence of arithmetic progressions
of blocks are defined recursively in r steps as follows. Since qr = 2nr−1qr−1, the
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interval [1, qr] can be divided into 2nr−1 blocks each of length qr−1 and since nr−1 =
W (k; rqr−1, by Lemma , among the first nr−1 blocks in [1, qr], there is an APk
of blocks: {B(1), B(2), ..., B(k)}, all with the same color patter under ∆. Set
B(k + 1) = B(k) + d1.
The blocks B(1), B(2), ..., B(k) are all contained in the first half of the interval
[1, qr], so B(k + 1) ⊆ [1, qr], but nothing is known about the coloring of B(k + 1)
yet. Since qr−1 = 2nr−2qr−2 the block B(1) can be divided into 2nr−2 blocks of
length qr−2. Since nr−2 = W (k; rqr−2, in the first half of B(1) there is an APk
of blocks {B(1, 1), B(1, 2), ..., B(1, k)} with difference d2 which all have the same
color pattern under ∆. Set B(1, k + 1) = B(1, k) + d2. Since B(1, k) is contained
in the first half of the block B(1), B(1, k+ 1) ⊆ B(1). But again, nothing is known
about the coloring of B(1, k + 1).
Translate the APk+1 of blocks {B(1, 1), ..., B(1, k), B(1, k+1)} into the other blocks
B(2), ..., B(k + 1) as follows: for i ∈ [2, k + 1] and j ∈ [1, k + 1], define

B(i, j) = B(1, j) + (i− 1)d1.

Since the APk of blocks {B(1, 1), ..., B(1, k)} ⊆ B(1) all have the same color pattern
and the blocks B(1), ..., B(k) all have the same color pattern for 1 ≤ i ≤ j ≤ k
all the blocks B(i, j) have the same color pattern. Also, for 1 ≤ i ≤ k, all of the
blocks B(i, k + 1) have the same color pattern, though not necessarily the same as
B(1, 1). In general, for s < r at step s of the recursion, the block B(1, ..., 1) will
be an interval of length qr−s+1 = 2nr−sqr−s and if B(1, ..., 1) is partitioned into
2nr−s blocks, since qr−s = W (k; rqr−s , the first half of B(1, ..., 1) contains an APk
of blocks

{B(1, ..., 1, 1), B(1, ..., 1, 2), ..., B(1, ..., 1, k)}
with difference ds, and all with the same color pattern under ∆. Set

B(1, ..., 1, k + 1) = B(1, ..., k) + ds

and translate the APk+1 of blocks {B(1, ..., 1, 1), ..., B(1, ..., 1, k + 1)} into all the
blocks constructed in step s − 1 of the recursion. Note that if i1, ..., is, j1, ..., js ∈
[1, k], then the blocks B(i1, i2, ..., is) and B(j1, ..., js) have the same color pattern
under ∆.
After step r of the recursion, the blocks are all of size q0 = 1. Since these blocks are
all singletons, they will be treated interchangeably as integers or sets. The following
properties of the blocks of integers constructed in this way are worth noting. First,
if 1 ≤ s < r and if 1 ≤ is+1, is+2, ..., ir ≤ k+ 1, then B(i1, ..., is, is+1, ..., ir) appears
in the same position in the block B(i1, ..., is) as B(j1, ..., js, is1 , ..., ir) does in the
block B(j1, ..., js). If 1 ≤ i1, ..., is, j1, ..., js ≤ k, then since the two blocks have the
same color pattern, the two integers have the same color under ∆.
Also, for 1 ≤ s ≤ r, since B(i1, ..., is1 , is + 1) = B(i1, ..., is1 , is) + ds and
B(i1, ..., is1 , is, is+1, ..., ir) and B(i1, ..., is1 , is + 1, is+1, ..., ir) appear in the same
position in their respective blocks,

B(i1, ..., is1 , is + 1, is+1, ..., ir)−B(i1, ..., is, ..., ir) = ds.

Consider the following r + 1 elements. For each i ∈ [0, r], let

bi = B(1, ..., 1︸ ︷︷ ︸
i

, k + 1, ..., k + 1︸ ︷︷ ︸
r-i

).
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Since ∆ is an r-coloring, by the pigeonhole principle, there must be u and v with
0 ≤ u < v ≤ r so that ∆(bu) = ∆(bv). For each i ∈ [1, k + 1], define

ai = B(1, ..., 1︸ ︷︷ ︸
u

, i, ..., i︸ ︷︷ ︸
v-u

, k + 1, ..., k + 1︸ ︷︷ ︸
r-v

).

Then a1 = bv, and ak+1 = bu. If i + 1 ≤ k, then by a previous remark, ai =
B(1, ..., 1, i, ..., i, k+1, ..., k+1) and ai = B(1, ..., 1, i+1, ..., i+1, k+1, ..., k+1) have
the same color. Since ∆(a1) = ∆(ak+1), the set {a1, ..., ak+1} is monochromatic
under ∆. To show that {a1, ..., ak+1} is an APk+1, fix i ∈ [1, k] and for each
m ∈ [0, v − u], define

aim = B(1, ..., 1︸ ︷︷ ︸
u

, i+ 1, ..., i+ 1︸ ︷︷ ︸
m

, i, ..., i︸ ︷︷ ︸
v-u-m

, k + 1, ..., k + 1︸ ︷︷ ︸
r-v

)

so that ai,0 = ai, and ai,v−u = ai+1. Now

ai,m − ai,m−1 = B(1, ..., 1, i+ 1, ..., i+ 1, i+ 1︸︷︷︸
(u+m)-th

, i, ..., i, k + 1, ..., k + 1)

−B(1, ..., 1, i+ 1, ..., i+ 1, i︸︷︷︸
(u+m)-th

, i, ..., i, k + 1, ..., k + 1

= du+m.

The sequence {ai,m | 0 ≤ m ≤ v − u} can be used to write the difference ai+1 − ai
as a telescoping series.

ai+1 − ai =

v−u∑
m=1

ai,m − ai,m−1

=

v−u∑
m=1

du+m

= du+1 + du+2 + ...+ dv.

Therefore, the set {a1, ..., ak+1} is a monochromatic APk+1 with difference du+1 +
du+2 + ... + dv and so W (k + 1; r) ≤ qr. Therefore, by induction, for any k ∈ N ,
the van der Waerden number W (k; r) exists. �

This implies Theorem 6.1.


