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Abstract. What good is Group Theory? These are the fruits of your labor,

young undergraduate.
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1. Introduction

This paper was another excruciatingly difficult one on which to focus, because
I did not realize I wanted to write on this subject until after having read most
of the material! From scouring MASS lecture notes to searching Wikipedia for
basic definitions to watching YouTube for ten hours just to find a “succinct” way
to prove some lemmas, I have tried my best to discern between the seven various
versions of solvability. I may have inadvertantly avoided some important details
such as providing alternate definitions to a solvable group or perhaps mentioning
that some extension of a field required ample roots of unity for a proof to be valid,
but it is pretty close to the truth.

2. Manifestools

Definition 2.1. A subgroup H ≤ G is normal if and only if conjugation by G fixes
H, or

H / G iff ghg−1 ∈ H for all g ∈ G, h ∈ H.

Definition 2.2. A group G is solvable if it has a finite series of subgroups

1 = G0 ≤ G1 ≤ ... ≤ Gn = G

such that Gi / Gi+1 and Gi+1/Gi is abelian for 0 ≤ i < n.

We have two isomorphism theorems as well.
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Lemma 2.3. If H / G and A ≤ G, then

H ∩A / A and
A

H ∩A
=
HA

H
.

If we further have the properties that H ≤ A / G, then

H / A, A/H / G/H, and
G/H

A/H
=
G

A
.

Now we wish to use our lemma to prove some facts about solvability.

Theorem 2.4. If G is a group and H ≤ G and N / G, then

(1) G is solvable implies H is solvable;
(2) G is solvable implies G/N is solvable;
(3) G/N and N are solvable imply G is solvable.

Proof. (1) We have by G solvable that there exists Gi satisfying the conditions
in the definition of solvable. Let Hi = Gi ∩ H. Then the tower 1 =
H0 / H1 / ... / Hn = H is a normal series. We wish to show the abelian
property too. Notice by use of the first isomorphism theorem,

Hi+1

Hi
=
Gi+1 ∩H
Gi ∩H

=
Gi+1 ∩H

Gi ∩ (Gi+1 ∩H)
' Gi(Gi+1 ∩H)

Gi
≤ Gi+1

Gi
.

The quotient Hi+1/Hi is a subgroup of the abelian Gi+1/Gi, so it too is
abelian. So H is solvable.

(2) We have by G solvable that there exists Gi satisfying the conditions in
the definition of solvable. Using the fact that the product of two normal
subgroups is still a normal subgroup, we have GiN is normal; but GN = G.
Then take each subgroup in the series and quotient by N to get

N/N = G0N/N / G1N/N / ... / GnN/N = G/N.

By the previous lemma,

Gi+1N/N

GiN/N
=
Gi+1N

GiN
=
Gi+1(GiN)

GiN
' Gi+1

Gi+1 ∩ (GiN)

' Gi+1/Gi
(Gi+1 ∩ (GiN))/Gi

≤ Gi+1

Gi
abelian.

(3) We have two series 1 = N0 /N1 / ... /Nm = N and N/N = G0/N /G1/N /
... / Gn/N = G/N . We can construct the series

1 = N0 / N1 / ... / Nm = N = G0 / G1 / ... / Gn = G.

This is a normal series because the quotients Ni+1/Ni are abelian, and

Gi+1

Gi
' Gi+1/N

Gi/N
abelian.

�

Now we can move on to establishing some of the facts that will help in coming
to a contradiction on the solvability of all polynomials.

Definition 2.5. Group G is simple if and only if its only normal subgroups are 1
and G.
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For example, for any prime p, the cyclic group Zp or Z/pZ is simple, but since
1/Zp is a normal series with an abelian quotient congruent to Zp, it is also solvable.
Actually, all non-abelian, simple groups are not solvable, and every perfect group
(or a group equal to its own commutator subgroup) is not solvable.

Theorem 2.6. A solvable group G is simple if and only if it is cyclic of prime
order.

Proof. Suppose G is simple. Then we have Gi satisfying the given criteria. Deleting
any repeats we may find in that series, we get the minimal Gi+1 6= Gi. Thus, Gn−1
is a proper subgroup of G, but since G is simple, Gn−1 = 1 and G = Gn/Gn−1
is abelian, yet every subgroup of G is normal and every element of G generates a
cyclic group. Since G does not have any nontrivial proper subgroups, it must be
the case that G is cyclic of prime order. Obviously, a cyclic group of prime order
is simple. �

Proposition 2.7. The symmetric group Sn is solvable for n < 5.

Proof. The smallest symmetric groups S1 and S2 are trivially solvable. Also, one
can check that the subgroup 〈(123)〉 ' Z3 is of index 2 in S3 and is, therefore,
normal. Hence, we have the composition series

1 / 〈(123)〉 / S3,

with the quotients Z2 and Z3 respectively, so S3 is solvable. Finally, consider A4, a
subgroup of index 2 in S4, so A4 /S4. Now let V = {1, (12)(34), (13)(24), (14)(23)},
the Klein group. V / S4, so V / A4. Furthermore, since #A4 = 12 and #V = 4,
it must be that A4/V ' Z3. And since A4 ' Z2 × Z2, we see that we have the
following composition series for S4:

1 / Z2 / V / A4 / S4,

with the abelian quotients Z2,Z2,Z3,Z2 respectively, meaning S4 is solvable. �

Theorem 2.8. For n ≥ 5, the alternating group An is simple.

Corollary 2.9. The symmetric group Sn is not solvable for n ≥ 5.

Proof. We know a subgroup of a solvable group is solvable, so if Sn is solvable, so
is An. But An is simple, so it is cyclic of prime order. However, |An| = n!

2 which is
not prime for n ≥ 5. �

Notice An is generated by 3-cycles (abc) = (ac)(ab). This is a standard fact.
A sketch of the proof is as follows: show every product of two transpositions is
a product of 3-cycles; since An is the set of every product of an even number of
transpositions, we will have proven the statement. Take σ, τ transpositions that
switch a common element a ∈ {1, ..., n}. Then they are of the form σ = (ab), τ =
(ac), so στ = (ab)(ac) = (acb). Now suppose σ and τ transpose distinct elements.
Then σ = (ab), τ = (cd), and στ = (ab)(cd) = (dac)(abd). A direct corollary of this
fact is that An is generated by m-cycles for any odd number 3 ≤ m ≤ n, based on
the identity

(a1a2a3) = (a2a1a3a4...am)(amam−1...a4a3a2a1).

Proposition 2.10. Consider nontrivial 1 6= N / An.

(1) If N contains a 3-cycle then it contains all 3 cycles, so N = An.
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(2) N contains a 3-cycle.

Proof. (1) Without loss of generality, suppose N contains the cycle (123). We
will show for any k > 3 that (32k) ∈ An. Notice, since N is a normal
subgroup, we have in particular that

(32k)−1(123)(32k) = (1k2) =⇒ (1k2) ∈ N.

Squaring, we get (1k2)2 = (12k) ∈ N for all k > 3. If n > 3, then let
a, b ≥ 3. The permutation (1a)(1b) is even so exists in An. By closure
under conjugation of N ,

((1a)(1b))−1(12k)((1a)(1b)) = (abk) ∈ N.

(2) The second part requires a case-by-case proof that I will omit but is stan-
dard.

�

Proof of Theorem 2.8. Any nontrivial normal subgroup of An is exactly An, mean-
ing An is trivial. �

3. Galois’ Up? Radical!

Suppose that E is an extension of the field F , written also as E/F . The extension
E/F is said to be normal if every irreducible polynomial over F either has no root
in E or splits into linear factors in E. The extension E/F is said to be separable if
for all α ∈ E, the minimal polynomial of α over F is a separable polynomial (i.e. the
minimal polynomial is square-free over E). Together, normality and separability
are equivalent to E/F being a Galois extension.

Definition 3.1. An automorphism of E/F is defined to be an automorphism (iso-
morphism from E to E) of E that fixes F pointwise. The set of all automorphisms
of E/F forms a group with the operation of function composition, called Aut(E/F ).
If E/F is a Galois extension, then Aut(E/F ) is called the Galois group of E over
F , and is denoted by Gal(E/F ).

There are multiple options for conditions we can assume for the remainder of this
paper, including the simpler condition: let charF = 0. But we could also assume
that all extensions we consider are separable and their degrees are not divisible by
their characteristic.

Definition 3.2. Let E/F be a finite field extension.

• The extension E/F is called solvable if there exists a Galois extension D/F
containing E with a solvable Galois group.
• The extension E/F is solvable in radicals if there exists a tower

F = D0 ⊂ D1 ⊂ ... ⊂ Dr

such that E ⊂ Dr and such that Di = Di−1( ni
√
ai) for some ai ∈ Di−1.

Now we aim to establish an equivalence between these two notions of solvability.

Theorem 3.3. E/F is solvable if and only if it is solvable in radicals.
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Proof. All fields in this proof will be subfields of the fixed algebraic closure of F .
So let E/F be solvable. Then let D/F be the Galois extension containing E with a
solvable Galois group G of order n. Let F (ζn) be the splitting field of xn − 1, with
ζn being the n-th root of unity, a solution to the polynomial. In the figure below,
consider the first diagram of fields. From the following lemma, D(ζn)/F (ζn) is a

D(ζn)

D F (ζn)

F

DE

D E

F

Figure 1. Field Extension Diagrams

Galois extension and its Galois group H is isomorphic to Gal(D/(D∩F (ζn))) ≤ G.
So H is solvable.

Lemma 3.4. Let D ⊂ F be a finite Galois extension of F and let E ⊂ F be any
finite extension of F . With view of the second diagram above, the composite field
DE is Galois over E and the Galois group Gal(DE/E) is isomorphic to Gal(D/(D∩
E)).

A cyclic tower of subgroups H = H1 ⊃ H2 ⊃ ... ⊃ Hr = 1 gives rise to a tower
of subfields

F (ζn) = J1 ⊂ ... ⊂ Jr = D(ζn),

where Ji = D(ζn)Hi . By the main theorem of Galois theory, D(ζn)/Ji is Galois
with a Galois group Hi. Since Hi+1 is normal in Hi, Ji+1/Ji is a Galois extension
with Galois group Hi/Hi+1, which is cyclic. Since Ji+1/Ji is a cyclic extension of
degree d | n (by Lagrange theorem), and Ji contains n-th roots of unity, we can
apply a theorem (4.3.1 of Tevelev) showing on each step Ji+1 = Ji(α) where some
power of α belongs to Ji−1. Thus, E/F is solvable in radicals.
Conversely, we can suppose E/F is solvable in radicals, i.e. E is contained in a
field D that admits a tower

F ⊂ D1 ⊂ ... ⊂ Dr = D

such that one each step Di = Di−1(α) where αk ∈ Di−1 for some k. Let n be the
least common multiple of all of the k’s that appear. Consider the tower of fields

F ⊂ F (ζn) ⊂ D1(ζn) ⊂ ... ⊂ Dr(ζn) = M,

where each consecutive embedding is Galois with and abelian Galois group on the
first step and a cyclic Galois group for the remaining steps. However, M/F is not
necessarily Galois. Let g1, ..., gk : M → F be the list of all embeddings over F ,
where g1 is the identity. Each of the embeddings g1(M) ⊂ F has the same property
as above: in the corresponding tower

F ⊂ gi(F (ζn)) ⊂ gi(D1(ζn)) ⊂ ... ⊂ gi(M),
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each consecutive embedding is Galois with an abelian Galois group. Notice that
the composite field M = g1(M) · · · gk(M) is Galois over F and admits a tower of
field extensions:

F ⊂ g1(M) ⊂ g1(M)g2(M) ⊂ ... ⊂ g1(M) · · · gk(M) =M.

Consider the i-th step of this tower

N ⊂ Ngi(M),

where N = g1(M) · · · gi−1(M). We can refine this inclusion of fields by taking
a composite of the tower for F above with N . By the lemma, each consecutive
embeddings in this tower is Galois with an abelian Galois group. By the main
theorem of Galois theory, this tower of subfields of M corresponds to an abelian
filtration of Gal(M/F ). Therefore this group is solvable. �

For some polynomial f ∈ F [x], we call it solvable if its Galois group is solvable,
and solvable in radicals if for any root β of f(x) in F , there exists a tower

F = D0 ⊂ ... ⊂ Dr

such that β ∈ Dr and such that Di = Di−1( ni
√
ai) for some ai ∈ Di−1. By the

theorem, these two notions are equivalent.

Proposition 3.5. Any polynomial f(x) ∈ Q[x] of degree less than 5 is solvable in
radicals.

Proof. Without loss of generality, we may consider only irreducible polynomials of
degree less than 5, since all reducible polynomials are products of irreducible ones.
Assume f is monic as well. Let E be the splitting field of f and let a1, ..., an be the
roots of f in Q. Then any Q-automorphism of E consists simply in permuting the
ai, so we see that Gal(E/Q) is a subgroup of Sn. Since any subgroup of a solvable
group is solvable and an irreducible polynomial is Q[x] is solvable by radicals if
and only if the Galois group of its splitting field is solvable, we see that general f
is solvable if and only if Sn is solvable (assuming some f can obtain Galois group
Sn for each n). We already proved that S1, S2, S3, and S4 are solvable groups.
Therefore, f is solvable in radicals. �

However, S5 is not solvable, because the only

4. Still Abel to Do It without Galois

When Abel published his first proof of the theorem that the general equation
of the fifth degree cannot be solved in radicals in 1824, he had little to use from
Galois theory, since Galois was only thirteen years old at the time. I will present
his formulations as well.
Recall if F is a field and f ∈ F [x] is monic, then let

f(x) = (x− x1)(x− x2) · · · (x− xn)

in some extension field of F , called the splitting field of f over F : E = F (x1, x2, ..., xn).
A finite algebraic extension D/F is called a radical tower over F if there is a series
of intermediate fields

F = D0 ⊂ D1 ⊂ ... ⊂ Dm = D

such that for each 0 ≤ i ≤ m, Di+1

(
pi
√
αi
)

where pi is prime and αi ∈ D×i . For
a polynomial f to solvable in radicals, there must exist a radical tower D/F such
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that E ⊂ D. We may restrict our attention to irreducible, monic polynomials,
whose splitting field to which we may assign a Galois group Gf . These are certain
transitive subgroups of the group of permutations of the roots of f(x).

Definition 4.1 (Alternative Solvable Group). Finite group G is solvable if there
is a sequence of subgroups

(e) = G0 ⊂ G1 ⊂ ... ⊂ Gm = G

such that Gi is normal in Gi+1 and pi+1 = [Gi+1 : Gi] is prime for 0 ≤ i < m.

Theorem 4.2 (Galois). Polynomial f ∈ F [x] is solvable in radicals if and only if
the Galois group of E/F is solvable.

Let F be a field of characteristic zero, and let s1, s2, ..., sn be algebraically inde-
pendent over F . Set F ′ = F (s1, s2, ..., s3). Now let the general equation of degree
n over F ′ be

f(x) = xn − s1xn−1 + s2x
n−2 − · · ·+ (−1)nsn ∈ F ′[x].

If f(x) = (x− θ1)(x− θ2) · · · (x− θn) in some extension E/F ′, then E is a splitting
field for f(x) over F ′. Generally, the roots x1, ..., xn are algebraically independent
over F ′, and each si is an elementary symmetric function of the xj :

s1 = x1 + x2 + · · ·+ xn

s2 = x1x2 + x1x3 + · · ·+ xn−1xn

...

si =
∑

1≤k1<...<ki≤n

i∏
j=1

xkj

...

sn = x1x2 · · ·xn.
Each permutation of the xi induces an automorphism of E which leaves F ′ fixed
pointwise; and the only elements of E fixed by all such automorphisms are the
elements of F ′. Thus, E/F ′ is a Galois extension with Galois group isomorphic
to Sn, or Sn is the Galois group of the general equation of degree n over k. Abel,
Ruffini, Vandermonde, Lagrange, and the like had all of this to work with, but were
missing the notion of a normal subgroup, so could not formulate a solvable group.

Theorem 4.3 (Abel). Let f(x) = xn − s1xn−1 + s2x
n−2 − · · · + (−1)nsn be the

general equation of degree n over F ′. If n ≥ 5, then this equation is not solvable in
radicals.

Proof. Abel proceeded with two steps to his proof.

• Claim 1 : If E is contained in a radical tower D over F ′, then E/F ′ is itself
a radical tower.
• Claim 2 : If n ≥ 5, then E/F ′ is not a radical tower.

Actually, Abel restricted himself to proving Claim 2 only when n = 5. Abel’s
noteworthy contributions mostly came from his proof of Claim 1, which Ruffini
likely thought was inessential. First, let us denote that for an element σ ∈ Sn

(σf)(x1, ..., xn) = f(xσ(1), ..., xσ(n)).
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Now define these two quantities (determinant and its square root)

δ =
∏
i<j

(xi − xj) and ∆ = δ2.

We notice for some σ ∈ Sn, σδ = ±δ. The sign on δ changes for each transposition
in σ, so An preserves δ while its opposite coset (12)An flips the sign of δ.

(1) Let us list a few Lemmas that will aid our proof. The proofs of each lemma
exist in the Rosen source.

Lemma 4.4. Let F be a field containing a primitive q-th root of unity. If
a ∈ F× is not a q-th power, then the polynomial xq − a is irreducible. If α
is a root of xq − a = 0 then every γ ∈ F (α) can be written in the form

γ = a0 + a1α+ · · ·+ aq−1α
q−1

where each ai ∈ F .

Lemma 4.5. Assume that xq − a ∈ F [x] is irreducible and that α is a
root. Let γ be an element of F (α) \ F . Then there is a β ∈ F (α) such that
βq ∈ F and

γ = b0 + b1β + · · ·+ bq−1β
q−1

where each bi ∈ F .

Lemma 4.6. Let q be a prime. Then for each integer i,

1 + ζiq + ζ2iq + · · ·+ ζ(q−1)iq =

{
0 if q does not divide i,

q if q divides i.

Lemma 4.7. Consider the extension E/F ′. Let y ∈ E. Then the irre-
ducible polynomial for y over F ′ splits into linear factors in E[x].

Now this lemma is the final one, containing the crux of the argument.

Lemma 4.8. Let L/F ′ be an extension field, q a prime, and a ∈ L and
element such that xq−a ∈ L[x] is irreducible. Let α be a root of xq−a = 0.
Set M = L(α) ∩ E and M0 = L ∩ E. If M 6= M0, then M/M0 is a radical
extension. More precisely, there is a β ∈ M such that βq ∈ M0 and β
generates M over M0.

Now suppose that L/F ′ is a radical tower and that E ⊆ L. We have

F ′ = L0 ⊂ L1 ⊂ ... ⊂ Lm = L

where Li+1 = Li
(

qi
√
ai
)
, qi being a prime, and ai ∈ Li. Now consider the

tower
F ′ = L0 ∩ E ⊆ L1 ∩ E ⊆ ... ⊆ Lm−1 ∩ E ⊆ E.

If Li+1 ∩ E = Li ∩ E there is nothing that need be said. Otherwise, then
the previous lemma shows that Li+1 ∩ E/Li ∩ E is a radical extension of
degree qi. Thus, after eliminating equalities, we see E as a radical tower
over F ′.

(2) Suppose F ′ = F ′0 ⊂ F ′1 ⊂ ... ⊂ F ′n = E is a radical tower. Then there
is a prime p and an element a ∈ F ′× such that F ′1 = F ( p

√
a). We will

show that p = 2 and that a = b2∆ where b ∈ F ′× and ∆ is the symmetric
function defined before. Thus, F ′1 will be uniquely determined and is the

field F (
√

∆).
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Set α = p
√
a and let τ ∈ Sn be a transposition. Applying τ we get τ(α)p = a,

which implies (τ(α)/α)p = 1, so τ(α) = ζpα, where ζpp = 1. Applying τ

again achieves α = τ(ζpα) = ζ2pα. Either τ(α) 6= α for some transposition τ
and p = 2, or α is fixed by all transpositions. However, if α is always fixed,
then we contradict α ∈ F ′, since all of Sn is generated by transpositions
and Sn should only fix roots of f in E/F ′. Thus, τ(α) = ±α for all
transpositions, thus all σ ∈ Sn. We know every 3-cycle is a square, i.e.
(abc) = (acb)2, so An(α) = α. Since it is true for one, τ(α) = −α for
all transpositions. This is a property shared by δ. So α/δ is fixed by all
transpositions and so also by all elements of Sn. Let b = α/δ ∈ F , and so

a = α2 = b2δ2 = b2∆,

showing F ′1 = F ′(
√
b2∆) = F ′(

√
∆).

Knowing this, we can prove that F1 has no radical extension in E. Suppose
c ∈ F ′×1 , and F ′2 = F ′1 ( q

√
c) for prime q. Set γ = q

√
c. We know An leaves

F ′1 fixed. Let ρ be a 3-cycle and apply ρ to both sides: ρ(γ) = ζqγ. Apply ρ
twice more to the equation yields γ = ρ3(γ) = ζ3q γ. Thus, either ρ(γ) = γ
for all 3-cycles, or ρ(γ) 6= γ for some 3-cycle and q = 3. Supposing the
former, γ is fixed by An and is in F ′1 contradicts our assumption about γ,
so we conclude q = 3. But we could have applied ρ four times more to
achieve γ = ρ5(γ) = ζ5q γ, giving us a contradiction.

�

5. Explicit Version

In 1828, Abel constructed the following family of polynomials of degree 5 to show
how not every polynomial is solvable in radicals. The polynomial is of the form

f(x) = x5 − x+ a = 0,

where a ∈ C chosen so that there are no multiple roots (so that all 5 roots in C are
distinct). An equivalent condition to f(x) having multiple root x = α is if and only
if f ′(α) = 0. We have f ′(x) = 5x4 − 1, which implies α = ekπ/2 for k = 0, 1, 2, 3
results in multiple roots, unless

a 6= ± 4

5 4
√

5
,± 4i

5 4
√

5
.

We allow a ∈ C \
{
± 4

5 4√5
,± 4i

5 4√5

}
, a punctured plane. Now we may perform an

analysis on how the roots of f(x) swap as a varies. Specifically, we can try to
perform a one-parameter loop that begins at a = 0, approaches one of the forbidden
values of a = 4

5 4√5
, performs a loop about a, and then returns to a = 0. We will

show that the roots of f0(x) = x5 − x: {0,±1,±i} change in this way:

0 1 i −1 −i

1 0 i −1 −i

We may visualize the graph of f(x) as as we vary a as described.



10 RAYMOND FRIEND

−1 1

−1

0

1

2

y

The action merges the roots x = 0 and x = 1, and then supposedly swaps their
places when returning to a = 0 (shown in black). Call b0 = 1

4√5
, a0 = 4

5 4√5
. Then we

let x = b0 + ε for ε ∈ C, |ε| ≈ 0. Going back to our original formula, when a ≈ a0,
we have an approximation

a = x− x5 = b0 + ε− (b0 − ε)5

= (b0 − b50) + ε(1− 5b40)− ε2(10b30) + ...

But we also have that b0 is a multiple root, so a0 = b0 − b50, and b0 = 1
4√5

implies

1 − 5b40 = 0. Thus, a = a0 − ε2(10b30). We interpret this as a small change in x
corresponding to a doubly fast change in a, explaining how the two roots swap.
Similarly, we have all of the transpositions containing 0 and u · a0 by approaching
u ∈ C, where u ∈ {±1,±i} for this example. S5 is generated by these four trans-
positions.
We would like to show a contradiction to solving f(x) in radicals. Assume there
exists

xk11 = p1(s1, ..., sn),

xk12 = p2(s1, ..., sn;x1),

...

such that we can describe all roots of f(x) = x5 − x+ a sequentially.

Lemma 5.1. Given 2 loops: `1, `2 in a-plane, consider their commutator ` =
[`1, `2]. Then ` fixes x1.

Proof. Let ζ = ζk1 , the k1-th root of unity. Notice that `1 : x1 7→ x1ζ
p, `2 : x1 7→

x1ζ
q, so ` = [`1, `2] = `1`2`

−1
1 `−12 maps

[`1, `2] : x1 7→ x1ζ
pζqζ−pζ−q = x1

by the abelian property of the group of roots of unity. �

Now the commutator of commutators: [[`1, `2], [`3, `4]] fixes x2, and so on. Thus,
we can construct automorphisms that fix all roots of f , since A5 = [A5, A5] (a
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perfect group, known because it is simple and non-abelian). However, we said that
the roots should permute, since every (even) permutation from A5 is realized by
some loop. Thus, we have reached a contradiction, showing this polynomial is not
solvable in radicals.
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