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Abstract. Algebra beautifully encapsulates all of the intricate phenomena

of geometry, in what I still find surprising. Geometric intuition is something
everyone shares, but algebraic passion is something only a bored child would

find himself exuding in the middle of the summer.

Contents

1. Introduction 1
2. I’ve Got My Own Problems, Algebra 2
3. Normal Formal 4
4. Peaceful Poleitics 5
5. Public Properties 6
6. Geometry Comedy 8
7. Relatively Speedy Application 8
References 9

1. Introduction

This paper began with reading Geometries; but I am only so confident with the
subject because of the exposure I received from both Dr. Svetlana Katok in her
book Fuchsian Groups and Dr. Serge Tabachnikov’s MATH 313H course. Before
that course, I graduated high school believing I had at least heard of the majority
of problems, branches, or terms in mathematics. Dr. Tabachnikov showed me
what I had learned was on par with the curriculum of his middle school, and that
mathematics was immensely richer than I had expected. Ever since, the internet
has contributed to that feeling as well. Playing the Wikipedia game taught me how
to navigate the web simply by use of hyperlinks, but the skill has exposed me to
pages upon pages of mathematics that I have yet to understand or even hear about.
This paper is nothing more than another conglomeration of a few Wikipedia articles
and some of their sources. Hopefully a permissible rate of a few Wikipedia pages
per month (alongside school) is enough to carry me through these years devoted
towards learning that have been assigned to me. On this subject, though, I enjoyed
the algebraic quality to this month’s work. It has exposed to me the advantages
and mental disadvantages of having many equivalent formulations or structures of
some basic algebraic objects, such as Möbius transformations.
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2. I’ve Got My Own Problems, Algebra

A classical theorem of Joseph Liouville determines that the set of all conformal
mappings of Euclidean space of degree greater than 2 under the usual metric are
compositions of these types of transformations: translations, homotheties, rota-
tions, and inversions. We define such a composition as a Möbius transformation,
which must take the form

f(x) = b+
αA(x− α)

|x− a|ε
,

where a, b ∈ Rn, α ∈ R, ε is either 0 or 2, and A is an orthogonal matrix. Really, the
domain of f is the one-point compactification of n-dimensional Euclidean space: Rn.

Alternatively, we may think about equivalent spaces Rn ∼= Ĉ ∼= CP1, the Riemann
sphere and complex projective line. Liouville’s theorem does not apply to the planar
case, but we may extend the idea of a Möbius transformation to this dimension and
investigate its properties. Namely, we will define a Möbius transformation on R2

as a function of the form

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C and ad − bc 6= 0. One may show that every Möbius transfor-
mation on R2 is in fact a conformal mapping by strenuous verification that the
inversion transformation z 7→ 1/z is conformal, since translations and rotations
trivially preserve angles. Moreover, we can imply other qualities of these transfor-
mations, including the preservation of the cross-ratio between four points, and the
fact that generalized-circles are sent to generalized-circles. The Möbius transforma-
tions are the orientation-preserving, bijective, conformal maps from the Riemann
sphere to itself, i.e., the orientation-preserving automorphisms of the Riemann
sphere as a complex manifold. Therefore, the set of all Möbius transformations
forms a group under composition, called the Möbius group, and may be denoted
by Möb(C) ∼= Aut+(C).

Let us begin by establishing many of the algebraic statements that aid in the clas-
sification and complete description of these transformations. First notice the way
we have defined Möbius transformations on R2 does in fact produce the complete
set of compositions of orientation-preserving isometries, homotheties, and inver-
sions. To see this, notice each type of transformation is Möbius, and then apply
each type to a general Möbius transformation to obtain another Möbius transfor-
mation. Also, if we are given the transformation f(z) = az+b

cz+d for a, b, c, d ∈ C and
ad − bc 6= 0, then we may calculate its inverse and derivative. The approach for
inverse is more clear if we define

f1(z) = z +
d

c
f2(z) =

1

z

f3(z) =
bc− ad
c2

z f4(z) = z +
a

c
.
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Then since f = f4 ◦ f3 ◦ f2 ◦ f1, we have

f−1(z) = f−11 ◦ f−12 ◦ f−13 ◦ f−14 (z)

=
dz − b
−cz + a

.

f ′(z) =
ad− bc

(cz + d)2
.

Note that the condition ad − bc 6= 0 is useful because it is exactly the condition
for the form az+b

cz+d to equal a constant C. Plugging in z = 0, we have C = b
d , but

z = 1 implies C = a+b
c+d . Combining, we achieve ad = bc. Constant functions are

not considered part of our set of Möbius transformations, so we exclude this case.
Next, let us consider the fixed points of f . We try to solve for a fixed z = γ:

γ = f(γ)⇔ γ =
aγ + b

cγ + d

⇔ cγ2 + (d− a)γ − b = 0

⇔ γ1,2 =
(a− d)±

√
(a− d)2 + 4bc

2c

=
(a− d)±

√
(a+ d)2 − 4(ad− bc)

2c
.

When c = 0, we see γ1 = − b
a−d , while the other fixed point is at infinity; if

a = d, then both fixed points are at infinity. Otherwise, we will naturally introduce
a classification of Möbius transformations based on the above discriminant. First
note that we could identify every element f ∈ Möb(C) with an element H ∈M(2,C)
by

f(z) =
az + b

cz + d
↔ H =

(
a b
c d

)
.

However, we see that Möb(C) ∼= GL(2,C)/{(C\{0})I} = PGL(2,C) since a Möbius
transformation determines its matrix only up to scalar multiples, and ad − bc 6= 0
implies inverability. Similarly, Möb(C) ∼= PSL(2,C) = SL(2,C)/{±I}. In our
classification scheme, we can assume H to be normalized such that its determinant
detH = ad− bc = 1. Thus, the expression for the fixed points γ1,2 reduces to

γ1,2 =
(a− d)±

√
(a+ d)2 − 4

2c
.

Call a Möbius transformation parabolic if tr2 H = (a + d)2 = 4. Besides the
identity mapping, which fixes all of C, all (and only) parabolic transformations
have exactly one fixed point:

γ =
a− d

2c
.

All non-parabolic transformations must have exactly two fixed points over C. An
elliptic transform is one whose matrix H has real trace, satisfying 0 ≤ tr2 H <
4. The particular case of trH = 0 is denoted as the circular transform, and
corresponds to a rotation by π about two fixed points. The two fixed points of an
elliptic transform are

γ1,2 =
(a− d)± i

√
4− (a+ d)2

2c
,
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with those of the circular transform being

γ1,2 =
(a− d)± 2i

2c
.

Finally, a loxodromic transform corresponds to tr2 H ∈ C \ [0, 4], with the special
case of being hyperbolic when its trace is real and tr2 H > 4.

3. Normal Formal

We can express all Möbius transformations in their normal form, as functions
of their fixed points. Without use of homogeneous coordinates, we require cases
dealing with fixed points at infinity. Because the action of PGL(2,C) on CP1 is the
action of the Möbius group on the Riemann sphere, we identify

[z1 : z2]↔ z1/z2.

The brackets are homogeneous coordinates (satisfying division relations) on CP1,
where [1 : 0] corresponds to the point at ∞ on the Riemann sphere. Recall in the
non-parabolic case, transform f has exactly 2 (distinct) fixed points in C: γ1, γ2,
where if either 0 or ∞ are fixed points of f , we choose γ1 = 0 and/or γ2 = ∞.
We claim every non-parabolic transformation is conjugate to a dilation or rotation:
z 7→ kz for some k ∈ C, which has fixed points 0 and ∞. To see this, define the
map

g(z) = [[z − γ1 : γ2] : [z : γ2]− 1] .

This map sends γ1 to 0 and γ2 to ∞ (in every case of φ1,2). The composition
gfg−1 thus fixes 0 and ∞, and is a dilation. Thus, the fixed point equation for the
transformation f can be written

[f(z)− γ1 : f(z)− γ2] = k[z − γ1 : z − γ2].

Solving for f gives us

f(z) =

[(
k − γ1

γ2

)
z + (1− k)γ1 :

k − 1

γ2
z + 1− kγ1

γ2

]
,

H(k; γ1, γ2) =

(
k − γ1

γ2
(1− k)γ1

k−1
γ2

1− kγ1
γ2

)
.

The advantage of using homogeneous coordinates is revealed when we consider the
case of γ2 =∞; the expression for H reduces to

H(k; γ,∞) =

(
k (1− k)γ
0 1

)
.

One may use these formulas to calculate the derivatives of f at the fixed points,
finding

f ′(γ1) = k, and f ′(γ2) = 1/k.

We are then well to call k a characteristic constant to f , and reversing the order of
the fixed points is equivalent to taking the inverse multiplier for the characteristic
constant:

H(k; γ1, γ2) = H(1/k; γ2, γ1).

We already showed that all non-parabolic transformations can be defined by a
matrix conjugate to (

λ 0
0 λ−1

)
,
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where the complex number λ is not equal to 0,±1. This corresponds to a rota-
tion/homethety from multiplication by the number k = λ2. Elliptic transforma-
tions have multipliers |k| = 1, k = e±iθ 6= 1; circular have k = −1; hyperbolic
have multipliers k ∈ R+, k = e±θ 6= 1; and loxodromic generally have multipliers
|k| 6= 1, k = λ2 = λ−2.
In the parabolic case, I have had great difficulty attempting to produce homoge-
neous representations of suitable g and f that work for any value of the only fixed
point γ ∈ C. The problem is unique to this case because γ could be 0 or ∞, unlike
in the non-parabolic case where we could let γ1 take 0 and γ2 take ∞. This is
disheartening, but I am forced to attack by means of two sub-cases. We pick the
transformation sending our fixed point γ to ∞ as

g(z) =

{
1

z−γ γ 6=∞,
z γ =∞.

The composition gfg−1 fixes infinity and is therefore a translation: gfg−1(z) = z+β
for some β ∈ C. When γ 6=∞, we see

1

f(z)− γ
=

1

z − γ
+ β,

so we have that

H(β; γ) =

(
1 + γβ −βγ2
β 1− γβ

)
.

If γ =∞, f(z) = z + β obviously, so

H(β;∞) =

(
1 β
0 1

)
.

At the fixed point, the derivative f ′(γ) = 1. Notice the characteristic constant
for any parabolic transformation is k = 1. Ideally, one could either confirm or
edit the choices of g, consolidating them into one choice, and then show some
expression for H is well-defined (avoids indeterminate expressions) for every case
of γ. Now, we may write the characteristic constant of a Möbius transformation
in terms of its logarithm: k = eρ+αi. We interpret ρ as an expansion factor,
explaining how attractive the fixed point λ1 is, and how repulsive λ2 is. The case
ρ = 0 is precisely elliptic, with zero attraction or repulsion. Points about λ1, λ2
are rotated about them. If α = 0, this is precisely hyperbolic, with vector fields
appearing identical to those of electric field lines between positive and negative
electrical charges. Loxodromic transformations require both ρ = 0 and α = 0, and
appear as S-shapes, spiraling about both fixed points.

4. Peaceful Poleitics

I read the entire Wikipedia page on Poland just to research that pun. Let us
define the two poles of any non-identity Möbius transformation: z∞ = −d/c, Z∞ =
a/c. The former is the point that f transforms to ∞, and the latter is the point to
which f transforms∞. We see that z∞+Z∞ = a−d

c = γ1 +γ2 (where the parabolic
case has a root of multiplicity 2). If we were to specify γ1, γ2, and z∞, we use our
relations to obtain

H(z∞; γ1, γ2) =

(
γ1 + γ2 − z∞ −γ1γ2

1 −z∞

)
.
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Comparing to the previous expression for H, we are left with more relations:

z∞ =
kγ1 − γ2

1− k

k =
γ2 − z∞
γ1 − z∞

=
Z∞ − γ1
Z∞ − γ2

=
a− cγ1
a− cγ2

,

which reduces to

k =
(a+ d) +

√
(a− d)2 + 4bc

(a+ d)−
√

(a− d)2 + 4bc
.

We can also relate the fixed points to the eigenvalues of the matrix representing
our transformation: H. Its characteristic polynomial

χ(λ) = det(λI − H)

= λ2 − trH · λ+ detH

= λ2 − (a+ d)λ+ (ad− bc)

has roots

λi =
(a+ d)±

√
(a− d)2 + 4bc

2
=

(a+ d)±
√

(a+ d)2 + 4(ad− bc)
2

= cγi + d.

5. Public Properties

Möbius transformations can be shown to be conformal maps by noting that circle
inversion is also a conformal operation. Moreover, generalized circles are sent to
generalized circles by the same reasoning. One can also prove that the cross-ratio
between four points in the plane is invariant under Möbius transformations; i.e. if
four distinct points z1, z2, z3, z4 are sent to distinct points w1, w2, w3, w4 by Möbius
f , then

(z1 − z3)(z2 − z4)

(z2 − z3)(z1 − z4)
=

(w1 − w3)(w2 − w4)

(w2 − w3)(w1 − w4)
.

Note that if one of the points, say, z4 =∞, the cross-ratio is modified to be

z1 − z3
z2 − z3

.

One verifies this fact by testing whether a translation, rotation, and inversion all
preserve cross-ratio. These are all straightforward calculations, and immediately
imply the same for Möb(C).

Corollary 5.1. The cross-ratio of four points is real if and only if they all lie on
some generalized circle.

Proof. We can think of the cross-ratio of four points as a function of the first
argument with the other three arguments fixed:

T : z 7→ (z − z3)(z2 − z4)

(z2 − z3)(z − z4)
.

Notice T (z2) = 1, T (z3) = 0, and T (z4) = ∞. Since T maps generalized circles to
generalized circles and is bijective, T must map the circle or straight line passing
through z2, z3, z4 to the the real line with infinity, R, and T (z) ∈ R if and only if
z = T−1Tz lies on the circle or straight line passing through z2, z3, z4, which is the
image of the real line plus infinity under the Möbius transformation T−1. �
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Next, we would like to make a claim on determining a Möbius transformation
from a few pre-images and their images.

Theorem 5.2. The action of the Möbius group on the Riemann sphere is sharply
3-transitive; i.e. given a set of three distinct points z1, z2, z3 on the Riemann sphere
and a second set of distinct points w1, w2, w3, there exists exactly one Möbius trans-
formation f(z) with f(zi) = wi for each i = 1, 2, 3.

Proof. Let T1 be a Möbius transformation such that

T1 : z 7→ (z − z2)(z1 − z3)

(z1 − z2)(z − z3)
.

Really, we make use of the homogeneous coordinates again to help with preventing
casework. Let G1 be the matrix of T1. If one of the points is ∞, then let that be
z3 =∞. We have

G =

(
[z1 − z3 : z3] −z2[z1 − z3 : z3]
[z1 − z2 : z3] z2 − z3

)
.

We have T1(z1) = 1, T1(z2) = 0, and T1(z3) =∞. Next, define a similar G2 for the
map T2 taking w1, w2, w3 to 0, 1,∞, respectively. Then H = G−12 G1 is the matrix
representation of the map taking z1, z2, z3 to w1, w2, w3. �

Alternate proof. This proof gives an explicit formula by means of determinants. If
we require that some w = az+b

cz+d , this is equivalent to the equation of a standard
hyperbola

cwz − az + dw − b = 0.

Our problem is thereby equivalent to finding the coefficients a, b, c, d of the hyper-
bola passing through the points (zi, wi). An explicit equation can be found by
evaluating the determinant ∣∣∣∣∣∣∣∣

zw z w 1
z1w1 z1 w1 1
z2w2 z2 w2 1
z3w3 z3 w3 1

∣∣∣∣∣∣∣∣ .
Laplace expansion is the method used for this evaluation, and each of the 4 steps
corresponds to the result for c,−a, d, and −b, in that order. For example,

c =

∣∣∣∣∣∣
z1 w1 1
z2 w2 1
z3 w3 1

∣∣∣∣∣∣ .
The constructed H has determinant

ad− bc = (z1 − z2)(z1 − z3)(z2 − z3)(w1 − w2)(w1 − w3)(w2 − w3),

which is nonzero if and only if each zi and each wi is distinct from the rest. The
case of one of the points being infinity requires division of all four determinants by
this variable and then taking the limit as the variable approaches ∞, as we have
done before. �
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6. Geometry Comedy

It would be a crime had I not mentioned the environment where Möbius transfor-
mations naturally act. Möb(C) is the transformation group of the half-plane model
of the hyperbolic plane H2; here, we define a transformation group G on space X
as a nonempty set of bijections of X supplied with the composition operation and
satisfying

(1) G is closed under composition;
(2) G is closed under inverses.

In Geometries and in my paper on geodesic coding, it is established that Möb(C) ∼=
Isom+(H2). This is done by first defining a metric on the hyperbolic plane, seeing
that it may be expressed as a function of the cross-ratio of points and their inter-
sections with the absolute along a geodesic passing through them, and then noting
that the invariance of cross-ratios by Möbius transformations implies preservations
of distance. As Geometries shows, Möbius transformations are vital in describing
the isomorphisms between the three discussed models for the hyperbolic plane. For
example, converting between the half-plane and Poincaré disk requires the use of
the map

Ω : D2 → H2, Ω : z 7→ i · 1 + z

1− z
.

As an aside, notice that, geometrically, a Möbius transformation may be obtained
by first performing stereographic projection from the plane to the unit 2-sphere,
S2, rotating and moving the sphere to a new location and orientation in space, and
then performing stereographic projection (from the new position of the sphere) to
the plane.
There is just too much for me to say on this subject, so I omit it :p

7. Relatively Speedy Application

In the Cayley-Klein model for the hyperbolic plane, hyperbolic straight lines
correspond to open chords of the disk D2. Let’s take some chord and parameterize
it by parameter x within (−1, 1). And let v ∈ R be such that |v| < c ∈ R× fixed.
Consider the map

Tv : [−1, 1]→ [−1, 1], x 7→ x+ v/c

xv/c+ 1
.

We could easily show that Tv is bijective on [−1, 1] to itself, leaving endpoints in
place and being an isometry on (−1, 1) with respect to the hyperbolic distance:

d(A,B) :=
1

2

∣∣∣∣log
|AX|
|BX|

:
|AY |
|BY |

∣∣∣∣ .
Thus, this isometry is, in a sense, a parallel shift along the given hyperbolic line by
the vector v/c. The composition of two parallel shifts by vectors v/c and u/c is

x 7→ x+ v/c

xv/c+ 1
7→
(
x+ u/c

xu/c+ 1
+ v/c

)/(
x+ u/c

xu/c+ 1
+ 1

)
=

(
x+ c2

v + u

c2 + vu
/c

)
/

(
c2x

v + u

c2 + vu
/c+ 1

)
;
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this shows the composition Tu ◦Tv is exactly a parallel shift Tw, where w is defined
by the formula

w :=
v + u

1 + vu/c2
.

This is exactly the formula for addition of velocities in a relativistic framework,
under Lorentzian transformations.
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