▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Full Achievement in Groups

Raymond Friend

Auburn University Mathematics REU originally presented at Clemson University 24 July 2018

Overview

1 Introduction

Pinitely-Generated Abelian Groups

3 Developing Theory

Application to Reals

5 Further Research

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Achievement Set

Definition

For each sequence S in group G, we define two types of *achievement* of S in G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Achievement Set

Definition

For each sequence S in group G, we define two types of *achievement* of S in G.

• Weak $\langle S \rangle$: the set of all products of elements of S kept *in* the same order as sequence S, with each element appearing at most once as a factor.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Achievement Set

Definition

For each sequence S in group G, we define two types of *achievement* of S in G.

- Weak $\langle S \rangle$: the set of all products of elements of S kept *in* the same order as sequence S, with each element appearing at most once as a factor.
- Strong \$\langle \overline{S} \rangle\$: the set of all products of elements of \$S\$ in any order that is finitely rearranged from the original order of \$S\$, with each element appearing at most once as a factor.

Achievement Set

Definition

For each sequence S in group G, we define two types of *achievement* of S in G.

- Weak $\langle S \rangle$: the set of all products of elements of S kept *in* the same order as sequence S, with each element appearing at most once as a factor.
- Strong \$\langle \overline{S} \rangle\$: the set of all products of elements of \$S\$ in any order that is finitely rearranged from the original order of \$S\$, with each element appearing at most once as a factor.

Convention: The empty product equals the identity element of G.

Weak Achievement Example

Weak $\langle S \rangle$: the set of all products of elements of *S* kept *in the same order as sequence S*, with each element appearing at most once as a factor.

Weak Achievement Example

Weak $\langle S \rangle$: the set of all products of elements of *S* kept *in the same order as sequence S*, with each element appearing at most once as a factor.

Example

Let $G = S_4$, and S = ((12), (24)). Then

Weak Achievement Example

Weak $\langle S \rangle$: the set of all products of elements of *S* kept *in the same order as sequence S*, with each element appearing at most once as a factor.

Example

Let $G = S_4$, and S = ((12), (24)). Then

$$\langle S \rangle = \{ id, (12), (24), (24)(12) \}$$

= $\{ id, (12), (24), (142) \}.$

Strong Achievement Example

Strong $\langle \overline{S} \rangle$: the set of all products of elements of *S* in any order that is finitely rearranged from the original order of *S*, with each element appearing at most once as a factor.

Strong Achievement Example

Strong $\langle \overline{S} \rangle$: the set of all products of elements of *S* in any order that is finitely rearranged from the original order of *S*, with each element appearing at most once as a factor.

Example

Let $G = S_4$, and S = ((12), (24)). Then

Strong Achievement Example

Strong $\langle \overline{S} \rangle$: the set of all products of elements of *S* in any order that is finitely rearranged from the original order of *S*, with each element appearing at most once as a factor.

Example

Let $G = S_4$, and S = ((12), (24)). Then

$$ig\langle \overline{S} ig
angle = \{ \textit{id}, (12), (24), (24)(12), (12)(24) \} \ = \{ \textit{id}, (12), (24), (142), (124) \} \, .$$

Definition

A sequence S is **weakly [strongly] achieving** in G if each element of the weak [strong] achievement set is uniquely represented by a permitted product.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

A sequence S is **weakly [strongly] achieving** in G if each element of the weak [strong] achievement set is uniquely represented by a permitted product.

Examples

Definition

A sequence S is **weakly [strongly] achieving** in G if each element of the weak [strong] achievement set is uniquely represented by a permitted product.

Examples

• In $G = S_4$, the sequence S = ((12), (24)) is both weakly and strongly achieving in G, since each element is uniquely achieved by a product in S.

Definition

A sequence S is **weakly [strongly] achieving** in G if each element of the weak [strong] achievement set is uniquely represented by a permitted product.

Examples

- In $G = S_4$, the sequence S = ((12), (24)) is both weakly and strongly achieving in G, since each element is uniquely achieved by a product in S.
- In $G = \mathbb{Z}_4$, the sequence S = (1, 2) is weakly achieving since

$$\langle S \rangle = \{0, 1, 2, 3\},\$$

but is not strongly achieving since 1 + 2 = 3 = 2 + 1.

Alternate Definition in Finite Sequences

Definition

A finite sequence *S* is **weakly [strongly] achieving** in *G* if each element of the achievement set is uniquely represented by a permitted product.

Alternate Definition in Finite Sequences

Definition

A finite sequence S is **weakly [strongly] achieving** in G if each element of the achievement set is uniquely represented by a permitted product.

Definition (Alternate)

A finite sequence S is

- weakly achieving iff $|\langle S \rangle| = 2^{|S|}$,
- strongly achieving iff $|\langle \overline{S} \rangle| = \lfloor |S|! \cdot e \rfloor$.

Suitable Orders

Depending on the order of G, the order of S can only be so large while still weakly or strongly achieving G. These nontrivial orders of S are called the **suitable** orders of G.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Suitable Orders

Depending on the order of G, the order of S can only be so large while still weakly or strongly achieving G. These nontrivial orders of S are called the **suitable** orders of G.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• $k \in \mathbb{N}$ is weakly suitable for G iff $k \leq \lfloor \lg |G| \rfloor$,

Suitable Orders

Depending on the order of G, the order of S can only be so large while still weakly or strongly achieving G. These nontrivial orders of S are called the **suitable** orders of G.

- $k \in \mathbb{N}$ is weakly suitable for G iff $k \leq \lfloor \lg |G| \rfloor$,
- $k \in \mathbb{N}$ is strongly suitable for G iff $\lfloor k! \cdot e \rfloor \leq |G|$.

Introduction

Application to Rea

Further Research

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Immediate Observations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Immediate Observations

• *S* being strongly achieving in *G* implies *S* is weakly achieving in *G*.

Immediate Observations

- *S* being strongly achieving in *G* implies *S* is weakly achieving in *G*.
- If S is weakly [strongly] achieving in G with order k, then any induced subsequence of S is weakly [strongly] achieving in G as well. So any order from 0 to |S| is weakly [strongly] achieving.

Immediate Observations

- *S* being strongly achieving in *G* implies *S* is weakly achieving in *G*.
- If S is weakly [strongly] achieving in G with order k, then any induced subsequence of S is weakly [strongly] achieving in G as well. So any order from 0 to |S| is weakly [strongly] achieving.
- Any non-Abelian group G contains a ≠ b such that ab ≠ ba, so G is strongly achieved for orders k = 0, 1, 2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Finitely Generated Abelian Groups

We can almost fully characterize weakly achieving sets in any finitely generated Abelian group.

Finitely Generated Abelian Groups

We can almost fully characterize weakly achieving sets in any finitely generated Abelian group.

Theorem

Every finitely generated Abelian group is isomorphic to a unique group of the form

$$\mathbb{Z}^r \oplus \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_m}$$

for some non-negative integers r, m, and $2 \le n_1 | \cdots | n_m$. We say r is the rank of the group.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Finitely Generated Abelian Groups

We can almost fully characterize weakly achieving sets in any finitely generated Abelian group.

Theorem

Every finitely generated Abelian group is isomorphic to a unique group of the form

$$\mathbb{Z}^r \oplus \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_m}$$

for some non-negative integers r, m, and $2 \le n_1 | \cdots | n_m$. We say r is the rank of the group.

Remark

An Abelian group is finite iff it is of rank r = 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finite, Finitely Generated Abelian Groups

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Finite, Finitely Generated Abelian Groups

• Cyclic \mathbb{Z}_n for $r \ge 2$ is weakly achieved for any suitable order k, say by

$$S_k = \left(1, 2, 4, ..., 2^{k-1}\right).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Finite, Finitely Generated Abelian Groups

• Cyclic \mathbb{Z}_n for $r \ge 2$ is weakly achieved for any suitable order k, say by

$$S_k = \left(1, 2, 4, ..., 2^{k-1}\right).$$

• A direct product of cyclic groups $\mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_m}$ is weakly achieved for any $k \leq \sum_{i=1}^m \lfloor \lg n_i \rfloor$ by

$$S=\bigcup_{i=1}^m\iota_i(S_i).$$

Finite, Finitely Generated Abelian Groups

• Cyclic \mathbb{Z}_n for $r \ge 2$ is weakly achieved for any suitable order k, say by

$$S_k = (1, 2, 4, ..., 2^{k-1}).$$

• A direct product of cyclic groups $\mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_m}$ is weakly achieved for any $k \leq \sum_{i=1}^m \lfloor \lg n_i \rfloor$ by

$$S = \bigcup_{i=1}^m \iota_i(S_i).$$

• Notice a suitable order for $\mathbb{Z}_{n_1}\oplus\cdots\oplus\mathbb{Z}_{n_m}$ is less than or equal to

$$\left\lfloor \lg \prod_{i=1}^{m} n_i \right\rfloor = \left\lfloor \sum_{i=1}^{m} \lg n_i \right\rfloor \ge \sum_{i=1}^{m} \lfloor \lg n_i \rfloor.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Finite, Finitely Generated Abelian Groups (cont.)

For $\mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_m}$ is less than or equal to

$$\left\lfloor \lg \prod_{i=1}^m n_i \right\rfloor = \left\lfloor \sum_{i=1}^m \lg n_i \right\rfloor \ge \sum_{i=1}^m \lfloor \lg n_i \rfloor.$$

Finite, Finitely Generated Abelian Groups (cont.)

For $\mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_m}$ is less than or equal to

$$\left\lfloor \lg \prod_{i=1}^m n_i \right\rfloor = \left\lfloor \sum_{i=1}^m \lg n_i \right\rfloor \ge \sum_{i=1}^m \lfloor \lg n_i \rfloor.$$

Finite, Finitely Generated Abelian Groups (cont.)

For $\mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_m}$ is less than or equal to

$$\left\lfloor \lg \prod_{i=1}^m n_i \right\rfloor = \left\lfloor \sum_{i=1}^m \lg n_i \right\rfloor \ge \sum_{i=1}^m \lfloor \lg n_i \rfloor.$$

Examples

Z₃ ⊕ Z₃ has maximum weakly suitable
 k = [lg(3 × 3)] = 3 > 2 = 1 + 1, but can be shown to have no weakly achieving sequences of order 3.

Finite, Finitely Generated Abelian Groups (cont.)

For $\mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_m}$ is less than or equal to

$$\left\lfloor \lg \prod_{i=1}^m n_i \right\rfloor = \left\lfloor \sum_{i=1}^m \lg n_i \right\rfloor \ge \sum_{i=1}^m \lfloor \lg n_i \rfloor.$$

Examples

- Z₃ ⊕ Z₃ has maximum weakly suitable
 k = [lg(3 × 3)] = 3 > 2 = 1 + 1, but can be shown to have no weakly achieving sequences of order 3.
- Z₃ ⊕ Z₆ has maximum weakly suitable
 k = [lg(3 × 6)] = 4 > 3 = 1 + 2, and has 16 weakly achieving sequences of order 4, including

$$S = ((0, 1), (1, 1), (1, 3), (1, 5)).$$
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Infinite, Finitely Generated Abelian Groups

Theorem

Every infinite, finitely generated Abelian group is weakly achieved for any order in $\mathbb{N} \cup \{\aleph_0\}$.

Infinite, Finitely Generated Abelian Groups

Theorem

Every infinite, finitely generated Abelian group is weakly achieved for any order in $\mathbb{N} \cup \{\aleph_0\}$.

• \mathbb{Z} is weakly achieved for any $k \in \mathbb{N}$ since \mathbb{Z}_{2^k} is weakly achieved in this order, and \mathbb{Z}_{2^k} may be embedded in \mathbb{Z} .

Infinite, Finitely Generated Abelian Groups

Theorem

Every infinite, finitely generated Abelian group is weakly achieved for any order in $\mathbb{N} \cup \{\aleph_0\}$.

- Z is weakly achieved for any k ∈ N since Z_{2k} is weakly achieved in this order, and Z_{2k} may be embedded in Z.
- \mathbb{Z} is weakly achieved for $k = \aleph_0$, say by

$$S = (1, 2, 4, ...).$$

Infinite, Finitely Generated Abelian Groups

Theorem

Every infinite, finitely generated Abelian group is weakly achieved for any order in $\mathbb{N} \cup \{\aleph_0\}$.

- Z is weakly achieved for any k ∈ N since Z_{2^k} is weakly achieved in this order, and Z_{2^k} may be embedded in Z.
- \mathbb{Z} is weakly achieved for $k = \aleph_0$, say by

$$S = (1, 2, 4, ...).$$

• \mathbb{Z}^r is weakly achieved since \mathbb{Z} may be embedded in \mathbb{Z}^r for any r > 0.

Infinite, Finitely Generated Abelian Groups

Theorem

Every infinite, finitely generated Abelian group is weakly achieved for any order in $\mathbb{N} \cup \{\aleph_0\}$.

- \mathbb{Z} is weakly achieved for any $k \in \mathbb{N}$ since \mathbb{Z}_{2^k} is weakly achieved in this order, and \mathbb{Z}_{2^k} may be embedded in \mathbb{Z} .
- \mathbb{Z} is weakly achieved for $k = \aleph_0$, say by

$$S = (1, 2, 4, ...).$$

- \mathbb{Z}^r is weakly achieved since \mathbb{Z} may be embedded in \mathbb{Z}^r for any r > 0.
- For any r > 0, $\mathbb{Z}^r \oplus \mathbb{Z}_{n_1} \oplus \cdots \oplus \mathbb{Z}_{n_m}$ is weakly achieved since \mathbb{Z}^r may be embedded within it.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Finitely Generated Abelian Groups (cont.)

Theorem

Any finitely generated Abelian group with rank r > 0 or with

$$\left\lfloor \lg \prod_{i=1}^m n_i \right\rfloor = \sum_{i=1}^m \lfloor \lg n_i \rfloor$$

is weakly achieved for any suitable order.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Direct Product on Achievement

Theorem

Suppose $G = A_1 \times \cdots \times A_m$, with each component being a group having maximum weakly achieved order k_i . Then G is weakly achieved in order $k \leq \sum_{i=1}^m k_i$.

Direct Product on Achievement

Theorem

Suppose $G = A_1 \times \cdots \times A_m$, with each component being a group having maximum weakly achieved order k_i . Then G is weakly achieved in order $k \leq \sum_{i=1}^m k_i$.

Sharp example: $\mathbb{Z}_3 \oplus \mathbb{Z}_3$ is weakly achieved by $k \leq 2 = 1 + 1$, but not by suitable order k = 3.

Direct Product on Achievement

Theorem

Suppose $G = A_1 \times \cdots \times A_m$, with each component being a group having maximum weakly achieved order k_i . Then G is weakly achieved in order $k \leq \sum_{i=1}^m k_i$.

Sharp example: $\mathbb{Z}_3 \oplus \mathbb{Z}_3$ is weakly achieved by $k \leq 2 = 1 + 1$, but not by suitable order k = 3.

Theorem

Suppose $G = A_1 \times \cdots \times A_m$, with each component being a group having maximum **strongly** achieved order k_i . Then G is **strongly** achieved in order $k \leq \sum_{i=1}^m k_i$.

Semi-Direct Product on Strong Achievement

Semi-direct product does not respect strong achievement. There are 4 groups represented by $C_8 \rtimes C_2$, two of which are

- $C_8 \times C_2$ is Abelian, so is only strongly achieved by order $k \le 1 < 2 = 1 + 1$.
- D_8 is strongly achieved by (r, s), but not for $k \ge 3$.

Semi-Direct Product on Strong Achievement

Semi-direct product does not respect strong achievement. There are 4 groups represented by $C_8 \rtimes C_2$, two of which are

• $C_8 \times C_2$ is Abelian, so is only strongly achieved by order $k \le 1 < 2 = 1 + 1$.

• **D**₈ is strongly achieved by (r, s), but not for $k \ge 3$. In general, $C_n \rtimes C_2$ could include $C_n \times C_2$ or D_n . For $n \ge 8$, D_n is only strongly achieved by order $k \le 2$.

How Much Stronger is Strong Achievement?

Is there a condition that, along with a sequence being weakly achieving, implies it also is strongly achieving?

How Much Stronger is Strong Achievement?

Is there a condition that, along with a sequence being weakly achieving, implies it also is strongly achieving?

• Weakly achieving but all elements do not commute pairwise?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How Much Stronger is Strong Achievement?

Is there a condition that, along with a sequence being weakly achieving, implies it also is strongly achieving?

Weakly achieving but all elements do not commute pairwise?
 No: S = ((12), (123), (1234)), since

(1234)(12) = (134) = (12)(123)(1234).

How Much Stronger is Strong Achievement?

Is there a condition that, along with a sequence being weakly achieving, implies it also is strongly achieving?

• Weakly achieving but all elements do not commute pairwise? No: S = ((12), (123), (1234)), since

(1234)(12) = (134) = (12)(123)(1234).

• All permutations of S are weakly achieving?

How Much Stronger is Strong Achievement?

Is there a condition that, along with a sequence being weakly achieving, implies it also is strongly achieving?

 Weakly achieving but all elements do not commute pairwise? No: S = ((12), (123), (1234)), since

(1234)(12) = (134) = (12)(123)(1234).

 All permutations of S are weakly achieving? No: S = ((12), (23), (124)), since (23)(124)(12) = (14)(23) = (124)(12)(23).

How Much Stronger is Strong Achievement?

Is there a condition that, along with a sequence being weakly achieving, implies it also is strongly achieving?

 Weakly achieving but all elements do not commute pairwise? No: S = ((12), (123), (1234)), since

(1234)(12) = (134) = (12)(123)(1234).

- All permutations of S are weakly achieving? No: S = ((12), (23), (124)), since (23)(124)(12) = (14)(23) = (124)(12)(23).
- Does S being weakly achieving imply each permutation of S is too?

How Much Stronger is Strong Achievement?

Is there a condition that, along with a sequence being weakly achieving, implies it also is strongly achieving?

 Weakly achieving but all elements do not commute pairwise? No: S = ((12), (123), (1234)), since

(1234)(12) = (134) = (12)(123)(1234).

- All permutations of S are weakly achieving? No: S = ((12), (23), (124)), since (23)(124)(12) = (14)(23) = (124)(12)(23).
- Does S being weakly achieving imply each permutation of S is too?
 No: S = ((12), (13), (234)), since

 (13)(234) = (1342) = (234)(12).

Achievement Sets in S_n

Strongly achieving sequences are still relatively abundant in S_n :

Example

There are (at least) n strong achievement sequences in S_n of order k = n - 1 up to rearrangement, of the form:

S = ((12), (13), ..., (1n)).

Result about Strong Achievement

Definition

If S is a subset of group G, denote by $K_G(S)$ the Orientizer of S in G, defined by

$$\mathcal{K}_G(S) := \{g \in G \mid \exists s, t \in S : gs = tg\}.$$

Result about Strong Achievement

Definition

If S is a subset of group G, denote by $K_G(S)$ the Orientizer of S in G, defined by

$$K_G(S) := \{g \in G \mid \exists s, t \in S : gs = tg\}.$$

Theorem

Suppose S is a strongly achieving subset of group G with $|S| \ge 2$. Then $S \cap K_G(S) = \emptyset$.

Result about Strong Achievement (cont.)

Remark

Note that for any subset S of G,

$$Z(G) \subseteq C_G(S) \subseteq N_G(S) \subseteq K_G(S),$$

and so if S is strongly achieving in G with order $k \ge 2$,

 $S \subseteq G \setminus K_G(S) \subseteq G \setminus N_G(S) \subseteq G \setminus C_G(S) \subseteq G \setminus Z(G).$

Result about Strong Achievement (cont.)

Remark Remark

Note that for any subset S of G,

$$Z(G) \subseteq C_G(S) \subseteq N_G(S) \subseteq K_G(S),$$

and so if S is strongly achieving in G with order $k \ge 2$,

 $S \subseteq G \setminus K_G(S) \subseteq G \setminus N_G(S) \subseteq G \setminus C_G(S) \subseteq G \setminus Z(G).$

Remark

We have no such result for weakly achieving $S \subset G$, since even $S \cap Z(G)$ may be nonempty, such as how for any Abelian G, Z(G) = G.

Weak Achievement in \mathbb{R}

• $\left\langle \left(\frac{1}{2^n}\right)_{n=1}^{\infty} \right\rangle = [0,1]$ is not weakly achieved.

Weak Achievement in $\mathbb R$

• $\left\langle \left(\frac{1}{2^n}\right)_{n=1}^{\infty} \right\rangle = [0,1]$ is not weakly achieved.

Theorem (R. Jones, 2011)

If $(x_n) \subset \mathbb{R}$, and if for each positive integer k we have

$$|x_k| > \sum_{n=k+1}^{\infty} |x_n|,$$

then $\langle (x_n) \rangle$ is a central Cantor set.

• $\left\langle \left(\frac{2}{3^n}\right)_{n=1}^{\infty} \right\rangle$ is the middle third Cantor set with endpoints 0 and 2, and is weakly achieved.

Weak Achievement in \mathbb{R} (cont.)

Three very similar examples behaving differently

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Weak Achievement in \mathbb{R} (cont.)

Three very similar examples behaving differently

•
$$\left\langle \left(\frac{1}{2^n} - \frac{1}{3^n}\right)_{n=0}^{\infty} \right\rangle = \left[0, \frac{1}{2}\right]$$
 is not weakly achieved.

(日) (日) (日) (日) (日) (日) (日) (日)

Weak Achievement in \mathbb{R} (cont.)

Three very similar examples behaving differently

•
$$\left\langle \left(\frac{1}{2^n} - \frac{1}{3^n}\right)_{n=0}^{\infty} \right\rangle = \left[0, \frac{1}{2}\right]$$
 is not weakly achieved.

• $\left\langle \left(\frac{1}{2^n} + \frac{1}{3^n}\right)_{n=0}^{\infty} \right\rangle$ is a central Cantor set with endpoints 0 and $\frac{7}{2}$, and is weakly achieved.

Weak Achievement in \mathbb{R} (cont.)

Three very similar examples behaving differently

•
$$\left\langle \left(\frac{1}{2^n} - \frac{1}{3^n}\right)_{n=0}^{\infty} \right\rangle = \left[0, \frac{1}{2}\right]$$
 is not weakly achieved.

- $\left\langle \left(\frac{1}{2^n} + \frac{1}{3^n}\right)_{n=0}^{\infty} \right\rangle$ is a central Cantor set with endpoints 0 and $\frac{7}{2}$, and is weakly achieved.
- $\left\langle \left(\frac{1}{2^n} + \frac{1}{(-3)^n}\right)_{n=0}^{\infty} \right\rangle = \left[0, \frac{3}{4}\right] \cup \left[2, \frac{11}{4}\right]$ is not weakly achieved, since $\frac{11}{24}$ is expressible as the sum of two distinct subsequences of *S*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples

Examples

• If $G = \mathbb{Z}$, call this minimum number g(n). We have for $k \in \mathbb{N}$:

$$g(2k) \le k^2 + k + 1, \qquad g(2k+1) \le k^2 + 2k + 2.$$

Examples

If G = Z, call this minimum number g(n). We have for k ∈ N:

$$g(2k) \le k^2 + k + 1, \qquad g(2k + 1) \le k^2 + 2k + 2.$$

• If $G = \mathbb{Z}^+$, call this minimum number $g^+(n)$. We have for $k \in \mathbb{N}$:

$$g^+(n) \leq \frac{n^2+n+2}{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Open Questions

Open Questions

• Is there a way to characterize a group based on its achievers, similarly to how we can characterize groups based on their generators?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Open Questions

- Is there a way to characterize a group based on its achievers, similarly to how we can characterize groups based on their generators?
- Are there nontrivial conditions that, along with weakness, imply strong achievement?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <
Open Questions

- Is there a way to characterize a group based on its achievers, similarly to how we can characterize groups based on their generators?
- Are there nontrivial conditions that, along with weakness, imply strong achievement?
- Can we enumerate the weakly or strongly achieving sequences in *S_n*?

Curious Discovery

In $G = S_4$, with strong order k = 3, no 3-cycle was involved in a strong achievement sequence. Why?

Application to Rea

Further Research

Uniqueness to Groups

Two overarching questions:

Uniqueness to Groups

Two overarching questions:

Question (1)

Is the set of weak/strong achievement sets unique to a group?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Uniqueness to Groups

Two overarching questions:

Question (1)

Is the set of weak/strong achievement sets unique to a group?

I suspect that both of these statements hold true for groups, but I have not showed either.

Uniqueness to Groups

Two overarching questions:

Question (1)

Is the set of weak/strong achievement sets unique to a group?

I suspect that both of these statements hold true for groups, but I have not showed either.

Question (2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Not Strongly Achieving Sequences

The answer to Question (2) in the case of strongly achieving is negative:

Not Strongly Achieving Sequences

The answer to Question (2) in the case of strongly achieving is negative:

Example

Not Strongly Achieving Sequences

The answer to Question (2) in the case of strongly achieving is negative:

Example

 $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ is not isomorphic to \mathbb{Z}_4 , but both are Abelian.

Not Strongly Achieving Sequences

The answer to Question (2) in the case of strongly achieving is negative:

Example

 $\mathbb{Z}_2\oplus\mathbb{Z}_2$ is not isomorphic to $\mathbb{Z}_4,$ but both are Abelian.

• Strongly Achieving in $\mathbb{Z}_2 \oplus \mathbb{Z}_2$:

 $\{(),((0,1)),((1,0)),((1,1))\}.$

Not Strongly Achieving Sequences

The answer to Question (2) in the case of strongly achieving is negative:

Example

 $\mathbb{Z}_2\oplus\mathbb{Z}_2$ is not isomorphic to $\mathbb{Z}_4,$ but both are Abelian.

• Strongly Achieving in $\mathbb{Z}_2 \oplus \mathbb{Z}_2$:

 $\{(),((0,1)),((1,0)),((1,1))\}\,.$

• Strongly Achieving in Z₄:

 $\{(), (1), (2), (3)\}$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Weakly Achieving Sequences

Question (2)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Weakly Achieving Sequences

Question (2)

Is the set of weakly achieving sequences unique to a group?

• I suspect the answer to this question is **no**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Weakly Achieving Sequences

Question (2)

- I suspect the answer to this question is **no**.
- However, I do not foresee a counterexample existing in groups of order less than 25.

Weakly Achieving Sequences

Question (2)

- I suspect the answer to this question is no.
- However, I do not foresee a counterexample existing in groups of order less than 25.
- We can easily see that all groups of prime order have unique sets of weakly achieving sequences.

Weakly Achieving Sequences

Question (2)

- I suspect the answer to this question is no.
- However, I do not foresee a counterexample existing in groups of order less than 25.
- We can easily see that all groups of prime order have unique sets of weakly achieving sequences.
- We can attempt to reconstruct a group and its Cayley Table from its set of weakly achieving sequences.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example of Reconstruction

Suppose we are given the weakly achieving sequences of the Klein-4 Group:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example of Reconstruction

Suppose we are given the weakly achieving sequences of the Klein-4 Group:

 $\mathscr{S}(K_4) = \{(), (a), (b), (c), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b)\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example of Reconstruction

Suppose we are given the weakly achieving sequences of the Klein-4 Group:

$$\mathscr{S}(K_4) = \{(), (a), (b), (c), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b)\}.$$

$$K_4 = \{e, a, b, c\}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Example of Reconstruction

Suppose we are given the weakly achieving sequences of the Klein-4 Group:

$$\mathscr{S}(K_4) = \{(), (a), (b), (c), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b)\}.$$

$$K_4 = \{e, a, b, c\}.$$

By process of elimation,

$$a \cdot b = c = b \cdot a,$$
 $a \cdot c = b = c \cdot a,$ $b \cdot c = a = c \cdot b.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Example of Reconstruction

Suppose we are given the weakly achieving sequences of the Klein-4 Group:

$$\mathscr{S}(K_4) = \{(), (a), (b), (c), (a, b), (b, a), (a, c), (c, a), (b, c), (c, b)\}.$$

$$K_4 = \{e, a, b, c\}.$$

By process of elimation,

$$a \cdot b = c = b \cdot a,$$
 $a \cdot c = b = c \cdot a,$ $b \cdot c = a = c \cdot b.$
 $e = a \cdot a = b \cdot b = c \cdot c.$

(ロ)、(型)、(E)、(E)、 E) の(の)

Harder Example

• It is hard to show that $\mathscr{S}(\mathbb{Z}_8 \oplus \mathbb{Z}_2) \not\approx \mathscr{S}(M_{16})$.

Harder Example

- It is hard to show that $\mathscr{S}(\mathbb{Z}_8 \oplus \mathbb{Z}_2) \not\approx \mathscr{S}(M_{16})$.
- In general, for two groups of order larger than 4, they may only have the "same" set of weakly achieving sequences if there exists a bijection between them that *preserves inverses* and *respects the identity*. Stronger conditions can be applied for even larger groups.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bijection Preserving Inverses

Smallest example is \mathbb{Z}_8 with Q_8 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bijection Preserving Inverses

Smallest example is \mathbb{Z}_8 with Q_8 .

$$\begin{split} \mathbb{Z}_8 &= \{0\} \sqcup \{4\} \sqcup \{1,2,3\} \sqcup \{7,6,5\}, \\ Q_8 &= \{1\} \sqcup \{-1\} \sqcup \{i,j,k\} \sqcup \{-i,-j,-k\}. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bijection Preserving Inverses

Smallest example is \mathbb{Z}_8 with Q_8 .

$$\mathbb{Z}_8 = \{0\} \sqcup \{4\} \sqcup \{1, 2, 3\} \sqcup \{7, 6, 5\}, \\ Q_8 = \{1\} \sqcup \{-1\} \sqcup \{i, j, k\} \sqcup \{-i, -j, -k\}.$$

Exactly 48 possible bijections that preserve inverses and respect the identity.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bijection Preserving Inverses

Smallest example is \mathbb{Z}_8 with Q_8 .

$$\begin{split} \mathbb{Z}_8 &= \{0\} \sqcup \{4\} \sqcup \{1,2,3\} \sqcup \{7,6,5\}, \\ Q_8 &= \{1\} \sqcup \{-1\} \sqcup \{i,j,k\} \sqcup \{-i,-j,-k\}. \end{split}$$

Exactly 48 possible bijections that preserve inverses and respect the identity.

However, while \mathbb{Z}_8 has (1, 2, 4) weakly achieving, Q_8 has no weakly achieving sequences of order 3.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bijection Preserving Inverses

Smallest example is \mathbb{Z}_8 with Q_8 .

$$\begin{split} \mathbb{Z}_8 &= \{0\} \sqcup \{4\} \sqcup \{1,2,3\} \sqcup \{7,6,5\}, \\ Q_8 &= \{1\} \sqcup \{-1\} \sqcup \{i,j,k\} \sqcup \{-i,-j,-k\}. \end{split}$$

Exactly 48 possible bijections that preserve inverses and respect the identity.

However, while \mathbb{Z}_8 has (1, 2, 4) weakly achieving, Q_8 has no weakly achieving sequences of order 3.

$$\therefore \mathscr{S}(\mathbb{Z}_8) \not\approx \mathscr{S}(Q_8).$$

Introduction	Finitely-Generated Abelian Groups	Developing Theory	Application to Reals	Further Research

Sources

- R. Jones, Achievement Sets of Sequences, MAA Monthly 118 (June-July 2011), 508–521.
- Thanks to the members of Auburn's Math REU, especially to Harris Cobb, for helping me brainstorm solutions to the many problems I encountered.