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Achievement Set

Definition

For each sequence S in group G , we define two types of
achievement of S in G .

• Weak 〈S〉: the set of all products of elements of S kept in
the same order as sequence S , with each element appearing at
most once as a factor.

• Strong
〈
S
〉
: the set of all products of elements of S in any

order that is finitely rearranged from the original order of S ,
with each element appearing at most once as a factor.

Convention: The empty product equals the identity element of G .
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Weak Achievement Example

Weak 〈S〉: the set of all products of elements of S kept in the
same order as sequence S , with each element appearing at most
once as a factor.

Example

Let G = S4, and S = ((12), (24)). Then

〈S〉 = {id, (12), (24), (24)(12)}
= {id, (12), (24), (142)} .
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Strong Achievement Example

Strong
〈
S
〉
: the set of all products of elements of S in any order

that is finitely rearranged from the original order of S , with each
element appearing at most once as a factor.

Example

Let G = S4, and S = ((12), (24)). Then〈
S
〉

= {id, (12), (24), (24)(12), (12)(24)}
= {id, (12), (24), (142), (124)} .
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Full Achievement

Definition

A sequence S is weakly [strongly] achieving in G if each element
of the weak [strong] achievement set is uniquely represented by a
permitted product.

Examples

• In G = S4, the sequence S = ((12), (24)) is both weakly and
strongly achieving in G, since each element is uniquely
achieved by a product in S.

• In G = Z4, the sequence S = (1, 2) is weakly achieving since

〈S〉 = {0, 1, 2, 3} ,

but is not strongly achieving since 1 + 2 = 3 = 2 + 1.
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Alternate Definition in Finite Sequences

Definition

A finite sequence S is weakly [strongly] achieving in G if each
element of the achievement set is uniquely represented by a
permitted product.

Definition (Alternate)

A finite sequence S is

• weakly achieving iff |〈S〉| = 2|S|,

• strongly achieving iff
∣∣〈S〉∣∣ = b|S |! · ec.



Introduction Finitely-Generated Abelian Groups Developing Theory Application to Reals Further Research

Alternate Definition in Finite Sequences

Definition

A finite sequence S is weakly [strongly] achieving in G if each
element of the achievement set is uniquely represented by a
permitted product.

Definition (Alternate)

A finite sequence S is

• weakly achieving iff |〈S〉| = 2|S|,

• strongly achieving iff
∣∣〈S〉∣∣ = b|S |! · ec.



Introduction Finitely-Generated Abelian Groups Developing Theory Application to Reals Further Research

Suitable Orders

Depending on the order of G , the order of S can only be so large
while still weakly or strongly achieving G . These nontrivial orders
of S are called the suitable orders of G .

• k ∈ N is weakly suitable for G iff k ≤ blg |G |c,
• k ∈ N is strongly suitable for G iff bk! · ec ≤ |G |.
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Immediate Observations

• S being strongly achieving in G implies S is weakly achieving
in G .

• If S is weakly [strongly] achieving in G with order k , then any
induced subsequence of S is weakly [strongly] achieving in G
as well. So any order from 0 to |S | is weakly [strongly]
achieving.

• Any non-Abelian group G contains a 6= b such that ab 6= ba,
so G is strongly achieved for orders k = 0, 1, 2.
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Finitely Generated Abelian Groups

We can almost fully characterize weakly achieving sets in any
finitely generated Abelian group.

Theorem

Every finitely generated Abelian group is isomorphic to a unique
group of the form

Zr ⊕ Zn1 ⊕ · · · ⊕ Znm

for some non-negative integers r ,m, and 2 ≤ n1 | · · · | nm.
We say r is the rank of the group.

Remark

An Abelian group is finite iff it is of rank r = 0.
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Finite, Finitely Generated Abelian Groups

• Cyclic Zn for r ≥ 2 is weakly achieved for any suitable order
k, say by

Sk =
(

1, 2, 4, ..., 2k−1
)
.

• A direct product of cyclic groups Zn1 ⊕ · · · ⊕ Znm is weakly
achieved for any k ≤

∑m
i=1 blg nic by

S =
m⋃
i=1

ιi (Si ).

• Notice a suitable order for Zn1 ⊕ · · · ⊕ Znm is less than or
equal to ⌊

lg
m∏
i=1

ni

⌋
=

⌊
m∑
i=1

lg ni

⌋
≥

m∑
i=1

blg nic .
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Finite, Finitely Generated Abelian Groups (cont.)

For Zn1 ⊕ · · · ⊕ Znm is less than or equal to⌊
lg

m∏
i=1

ni

⌋
=

⌊
m∑
i=1

lg ni

⌋
≥

m∑
i=1

blg nic .

Examples

• Z3 ⊕ Z3 has maximum weakly suitable
k = blg(3× 3)c = 3 > 2 = 1 + 1, but can be shown to have
no weakly achieving sequences of order 3.

• Z3 ⊕ Z6 has maximum weakly suitable
k = blg(3× 6)c = 4 > 3 = 1 + 2, and has 16 weakly achieving
sequences of order 4, including

S = ((0, 1), (1, 1), (1, 3), (1, 5)) .
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Infinite, Finitely Generated Abelian Groups

Theorem

Every infinite, finitely generated Abelian group is weakly achieved
for any order in N ∪ {ℵ0}.

• Z is weakly achieved for any k ∈ N since Z2k is weakly
achieved in this order, and Z2k may be embedded in Z.

• Z is weakly achieved for k = ℵ0, say by

S = (1, 2, 4, ...).

• Zr is weakly achieved since Z may be embedded in Zr for any
r > 0.

• For any r > 0, Zr ⊕ Zn1 ⊕ · · · ⊕ Znm is weakly achieved since
Zr may be embedded within it.
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Finitely Generated Abelian Groups (cont.)

Theorem

Any finitely generated Abelian group with rank r > 0 or with⌊
lg

m∏
i=1

ni

⌋
=

m∑
i=1

blg nic

is weakly achieved for any suitable order.
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Direct Product on Achievement

Theorem

Suppose G = A1 × · · · × Am, with each component being a group
having maximum weakly achieved order ki . Then G is weakly
achieved in order k ≤

∑m
i=1 ki .

Sharp example: Z3 ⊕ Z3 is weakly achieved by k ≤ 2 = 1 + 1, but
not by suitable order k = 3.

Theorem

Suppose G = A1 × · · · × Am, with each component being a group
having maximum strongly achieved order ki . Then G is strongly
achieved in order k ≤

∑m
i=1 ki .
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Semi-Direct Product on Strong Achievement

Semi-direct product does not respect strong achievement.
There are 4 groups represented by C8 o C2, two of which are

• C8 × C2 is Abelian, so is only strongly achieved by order
k ≤ 1 < 2 = 1 + 1.

• D8 is strongly achieved by (r , s), but not for k ≥ 3.

In general, Cn o C2 could include Cn × C2 or Dn. For n ≥ 8, Dn is
only strongly achieved by order k ≤ 2.
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How Much Stronger is Strong Achievement?

Is there a condition that, along with a sequence being weakly
achieving, implies it also is strongly achieving?

• Weakly achieving but all elements do not commute pairwise?
No: S = ((12), (123), (1234)), since

(1234)(12) = (134) = (12)(123)(1234).

• All permutations of S are weakly achieving?
No: S = ((12), (23), (124)), since

(23)(124)(12) = (14)(23) = (124)(12)(23).

• Does S being weakly achieving imply each permutation of S is
too?
No: S = ((12), (13), (234)), since

(13)(234) = (1342) = (234)(12).
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• All permutations of S are weakly achieving?
No: S = ((12), (23), (124)), since

(23)(124)(12) = (14)(23) = (124)(12)(23).

• Does S being weakly achieving imply each permutation of S is
too?
No: S = ((12), (13), (234)), since

(13)(234) = (1342) = (234)(12).
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Achievement Sets in Sn

Strongly achieving sequences are still relatively abundant in Sn:

Example

There are (at least) n strong achievement sequences in Sn of order
k = n − 1 up to rearrangement, of the form:

S = ((12), (13), ..., (1n)) .
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Result about Strong Achievement

Definition

If S is a subset of group G , denote by KG (S) the Orientizer of S
in G , defined by

KG (S) := {g ∈ G | ∃s, t ∈ S : gs = tg} .

Theorem

Suppose S is a strongly achieving subset of group G with |S | ≥ 2.
Then S ∩ KG (S) = ∅.
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Result about Strong Achievement (cont.)

Remark

Note that for any subset S of G,

Z (G ) ⊆ CG (S) ⊆ NG (S) ⊆ KG (S),

and so if S is strongly achieving in G with order k ≥ 2,

S ⊆ G \ KG (S) ⊆ G \ NG (S) ⊆ G \ CG (S) ⊆ G \ Z (G ).

Remark

We have no such result for weakly achieving S ⊂ G, since even
S ∩ Z (G ) may be nonempty, such as how for any Abelian G,
Z (G ) = G.
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Weak Achievement in R

•
〈(

1
2n

)∞
n=1

〉
= [0, 1] is not weakly achieved.

Theorem (R. Jones, 2011)

If (xn) ⊂ R, and if for each positive integer k we have

|xk | >
∞∑

n=k+1

|xn| ,

then 〈(xn)〉 is a central Cantor set.

•
〈(

2
3n

)∞
n=1

〉
is the middle third Cantor set with endpoints 0 and

2, and is weakly achieved.
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Weak Achievement in R (cont.)

Three very similar examples behaving differently

•
〈(

1
2n −

1
3n

)∞
n=0

〉
=
[
0, 12
]

is not weakly achieved.

•
〈(

1
2n + 1

3n

)∞
n=0

〉
is a central Cantor set with endpoints 0 and

7
2 , and is weakly achieved.

•
〈(

1
2n + 1

(−3)n

)∞
n=0

〉
=
[
0, 34
]
∪
[
2, 114

]
is not weakly achieved,

since 11
24 is expressible as the sum of two distinct subsequences

of S .



Introduction Finitely-Generated Abelian Groups Developing Theory Application to Reals Further Research

Weak Achievement in R (cont.)

Three very similar examples behaving differently

•
〈(

1
2n −

1
3n

)∞
n=0

〉
=
[
0, 12
]

is not weakly achieved.

•
〈(

1
2n + 1

3n

)∞
n=0

〉
is a central Cantor set with endpoints 0 and

7
2 , and is weakly achieved.

•
〈(

1
2n + 1

(−3)n

)∞
n=0

〉
=
[
0, 34
]
∪
[
2, 114

]
is not weakly achieved,

since 11
24 is expressible as the sum of two distinct subsequences

of S .



Introduction Finitely-Generated Abelian Groups Developing Theory Application to Reals Further Research

Weak Achievement in R (cont.)

Three very similar examples behaving differently

•
〈(

1
2n −

1
3n

)∞
n=0

〉
=
[
0, 12
]

is not weakly achieved.

•
〈(

1
2n + 1

3n

)∞
n=0

〉
is a central Cantor set with endpoints 0 and

7
2 , and is weakly achieved.

•
〈(

1
2n + 1

(−3)n

)∞
n=0

〉
=
[
0, 34
]
∪
[
2, 114

]
is not weakly achieved,

since 11
24 is expressible as the sum of two distinct subsequences

of S .



Introduction Finitely-Generated Abelian Groups Developing Theory Application to Reals Further Research

Weak Achievement in R (cont.)

Three very similar examples behaving differently

•
〈(

1
2n −

1
3n

)∞
n=0

〉
=
[
0, 12
]

is not weakly achieved.

•
〈(

1
2n + 1

3n

)∞
n=0

〉
is a central Cantor set with endpoints 0 and

7
2 , and is weakly achieved.

•
〈(

1
2n + 1

(−3)n

)∞
n=0

〉
=
[
0, 34
]
∪
[
2, 114

]
is not weakly achieved,

since 11
24 is expressible as the sum of two distinct subsequences

of S .



Introduction Finitely-Generated Abelian Groups Developing Theory Application to Reals Further Research

Variation

A possible variation: Given natural number n and set G , what is
the minimum order of a weak achievement set using n elements
from G?

Examples

• If G = Z, call this minimum number g(n). We have for
k ∈ N:

g(2k) ≤ k2 + k + 1, g(2k + 1) ≤ k2 + 2k + 2.

• If G = Z+, call this minimum number g+(n). We have for
k ∈ N:

g+(n) ≤ n2 + n + 2

2
.
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Open Questions

• Is there a way to characterize a group based on its achievers,
similarly to how we can characterize groups based on their
generators?

• Are there nontrivial conditions that, along with weakness,
imply strong achievement?

• Can we enumerate the weakly or strongly achieving sequences
in Sn?
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Curious Discovery

In G = S4, with strong order k = 3, no 3-cycle was involved in a
strong achievement sequence. Why?
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Uniqueness to Groups

Two overarching questions:

Question (1)

Is the set of weak/strong achievement sets unique to a group?

I suspect that both of these statements hold true for groups, but I
have not showed either.

Question (2)

Is the set of weakly/strongly achieving sequences unique to a
group?
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Not Strongly Achieving Sequences

The answer to Question (2) in the case of strongly achieving is
negative:

Example

Z2 ⊕ Z2 is not isomorphic to Z4, but both are Abelian.

• Strongly Achieving in Z2 ⊕ Z2:

{(), ((0, 1)), ((1, 0)), ((1, 1))} .

• Strongly Achieving in Z4:

{(), (1), (2), (3)} .
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Weakly Achieving Sequences

Question (2)

Is the set of weakly achieving sequences unique to a group?

• I suspect the answer to this question is no.

• However, I do not foresee a counterexample existing in groups
of order less than 25.

• We can easily see that all groups of prime order have unique
sets of weakly achieving sequences.

• We can attempt to reconstruct a group and its Cayley Table
from its set of weakly achieving sequences.
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Example of Reconstruction

Suppose we are given the weakly achieving sequences of the
Klein-4 Group:

S(K4) = {(), (a), (b), (c), (a, b), (b, a), (a, c), (c , a), (b, c), (c , b)} .

K4 = {e, a, b, c}.

By process of elimation,

a · b = c = b · a, a · c = b = c · a, b · c = a = c · b.

e = a · a = b · b = c · c.
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Harder Example

• It is hard to show that S(Z8 ⊕ Z2) 6≈ S(M16).

• In general, for two groups of order larger than 4, they may
only have the “same” set of weakly achieving sequences if
there exists a bijection between them that preserves inverses
and respects the identity. Stronger conditions can be applied
for even larger groups.
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Bijection Preserving Inverses

Smallest example is Z8 with Q8.

Z8 = {0} t {4} t {1, 2, 3} t {7, 6, 5},
Q8 = {1} t {−1} t {i , j , k} t {−i ,−j ,−k}.

Exactly 48 possible bijections that preserve inverses and respect
the identity.
However, while Z8 has (1, 2, 4) weakly achieving, Q8 has no weakly
achieving sequences of order 3.

∴ S(Z8) 6≈ S(Q8).
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Sources

• R. Jones, Achievement Sets of Sequences, MAA Monthly 118
(June-July 2011), 508–521.

• Thanks to the members of Auburn’s Math REU, especially to
Harris Cobb, for helping me brainstorm solutions to the many
problems I encountered.
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