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Abstract. A normal form for elliptic curves, introduced by Harold M. Ed-

wards in 2007, quickly became well-known because of its convenient and com-

plete addition formula, as well as its interesting parametric form. Every elliptic
curve over a field of characteristic greater than 2 is birationally equivalent to

a curve in Edwards form over an appropriate extension of the field. Bernstein

and Lange introduced a broader analysis of this form, while also comparing
multiple operations in Edwards form to other coordinate systems, concluding

Edwards form could outperform many of the leading algorithms of the time.

The application to cryptography is emphasized in Section 5.
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1. Introduction

There exists a broad field of study on cryptography that has embraced the var-
ied use of elliptic curve mathematics partly for its improved efficiency in forward
encryption over other methods. Harold Edwards, in 2007, published results on a
particular family of curves over finite fields that is of particular interest in elliptic
curve cryptography. Bernstein and Lange developed many of their applications in
the same year, providing algorithms for many types of calculations used in these
applications, and compared their algorithms to the fastest algorithms associated
with other coordinate systems for elliptic curves. Their algorithms bested the ma-
jority of the previously known algorithms, providing a new wave of efficiency to
elliptic curve cryptography.
Edwards curves are powerful because over some sufficiently extended field, every
elliptic curve is birationally equivalent to a curve in Edwards form. Moreover,
the addition formula for elliptic curves translated to the language of Edwards co-
ordinates is complete, meaning it has the same form no matter the parameters.
Doubling, general addition, etc. are all treated equally.
Finally, Edwards curve admit a relatively natural parameterization, and analyzing
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the parameterization gives a succinct, numerical method for classifying all elliptic
curves by Edwards curves.

2. Elliptic Curves

Definition 2.1. An elliptic curve over field k is presented with k along with a
curve of the form y2 = f(x), where f(x) is a polynomial of degree 3 or 4 with
distinct roots that has coefficients in an algebraic number field.

Definition 2.2. An elliptic function field is the field of rational functions on a
specified elliptic curve. Elements are represented by expressions of the form r(x) +
s(x)z, where r(x) and s(x) are rational functions of x with coefficients in k.

We define two curves to be birationally equivalent if their fields of rational func-
tions are isomorphic. I.e. we could construct rational transformations in one coor-
dinate system to the other, as well as the inverse transformation.

Our study of elliptic curves may be realized over any field of characteristic not
2 or 3, and we wish to have some group structure over these curves. The following
operation is natural for any smooth, irreducible cubic curve F ⊂ CP2.

Definition 2.3. Let F ⊂ CP2 be an irreducible curve, and let k be a field. For
P 6= Q ∈ F over k, denote by PQ the line in CP2 passing through P and Q. Define
P ? Q as follows

• If PQ is not tangent at either P nor Q to F , then since lines intersect
cubics at 3 points, counting multiplicity, there exists a third point R ∈
F ∩ PQ \ {P,Q}. Then

P ? Q := R.

• When PQ is tangent to F at P (or Q) and P 6= Q, then define

P ? Q := P (or Q)

• If P = Q, then PQ is definitely tangent to F at P . Treat this point as a
tangent point of multiplicity 2 and find the third intersection point R on
F and define P ? P := R, as in the first case.

One can prove the following properties of this binary operation easily.

Proposition 2.4. ? satisfies the properties. For any P,Q,R, S on the curve F ,

(i) P ? Q = Q ? P ,
(ii) (P ? Q) ? P = Q,

(iii) ((P ? Q) ? R) ? S = P ? ((Q ? S) ? R).

Now we will define the addition operation on the curve F over field k and prove
that (F (k),+) is an abelian group.

Definition 2.5. Let ∞ = [0 : 1 : 0] be the infinite point in CP2. Then define the
operation + on F by P +Q = (P ? Q) ?∞.

Lemma 2.6. The points of F form an abelian group under the operation +. The
identity element of the group is∞, and an element P has inverse −P = P ?(∞?∞).
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Proof. We verify that (F,+) satisfies the axioms for an abelian group. Commuta-
tivity easily follows from the commutativity of ? in 2.4(i), and commutativity of ?
also implies ∞ is the identity element. Associativity follows from 2.4(iii):

(P +Q) +R = (((P ? Q) ?∞) ? R) ?∞
= (P ? ((Q ? R) ?∞)) ?∞
= (P ? (Q+R)) ?∞ = P + (Q+R).

Finally, each element P has an inverse −P = P ? (∞ ?∞) since

P + (−P ) = P + (P ? (∞ ?∞))

= (P ? (P ? (∞ ?∞))) ?∞
= ((P ? (∞ ?∞)) ? P ) ?∞ = (∞ ?∞) ?∞ =∞.

�

Geometrically, general addition on an elliptic curve follows the procedure: pick
summands P and Q; draw PQ and find its third intersection with F , point −R; then
take the vertical line passing through R and find the second intersection with F :
point −R. Then P +Q = −R. This method of addition on elliptic curves composes
the Weierstrass form for addition on elliptic curves. Obviously there are multiple
cases for addition depending on the choice of P,Q ∈ F . Algebraically, and without
proof, this type of addition can be described on the curve y2 = x3−px− q over the
field k whose characteristic is neither 2 nor 3, points P = (xP , yP ), Q = (xQ, yQ),

slope of PQ being s, and R = −(P +Q) by

xR = s2 − xP − xQ, yR = yP + s(xR − xP ).

3. Edwards Coordinates

Definition 3.1. The equation of an Edwards curve over a field k which does not
have characteristic 2 is

u2 + v2 = 1 + du2v2

for some scalar d ∈ K \ {0, 1}. Alternatively, one may define an Edwards curve by
the form

u2 + v2 = c2(1 + du2v2)

where c, d ∈ k with cd(1− d · c4) 6= 0.

It is possible to restrict our attention to the c = 1 case without any loss of
generality by reparameterizing: if d = dc4, then define u = u/c and v = v/c. It is
easy to check the isomorphism/birational equivalence. Bernstein and Lange remark
that for computational purposes, minimizing c is often much more useful than
minimizing d; moreover, despite an Edwards curve being easily transformable to an
isomorphic Edwards curve having c = 1, there may be applications in which c 6= 1.
This could occur, for example, for a curve with a fairly small c and d = 1 having
smaller computational steps in the costs of multiplying by c and multiplications by
d than those on the curve with c = 1 and d = c4.
Now we wish to find which elliptic curves may be represented by an Edwards curve.
Bernstein and Lange propose the following:

Theorem 3.2. Let k be a field with characteristic not 2. Let E be an elliptic curve
over k such that the group E(k) has an element of order 4. Then
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(i) there exists d ∈ k \ {0, 1} such that the curve u2 + v2 = 1 + du2v2 is
birationally equivalent over k to a quadratic twist of E.

(ii) If E(k) has a unique element of order 2, then there is a nonsquare d ∈ k
such that the curve u2 + v2 = 1 + du2v2 is birationally equivalent over k to
a quadratic twist of E.

(iii) If k is finite and E(k) has a unique element of order 2, then there is a
nonsquare d ∈ k such that the curve u2 + v2 = 1 + du2v2 is birationally
equivalent over k to E.

Proof. Write E in “long Weierstrass form” s̄2 + ā1r̄s̄ + ā3s̄ = r̄3 + ā2r̄
2ā4r̄ā6. We

reduce this by defining s = s̄ + (ā1r̄ + ā3)/2. Moreover, let P = (r1, s1) be an
element of order 4 on E(k). Let 2P = (r2, 0). Then define r = r̄ − r2, making
s = s̄+ (ā1(r + r2) + ā3)/2. Then we obtain a curve of the form

s2 = r3 + a2r
2 + a4r,

where a1 = a3 = a6 = 0, a2 = ā2 + ā21/4 + 3r1, a4 = ā4 + ā1ā3/2 + 2(ā2 + ā21/4 +
3r1) + 3r21, and 2P = (0, 0). Next, we wish to express a2, a4 in terms of r1, s1. Note
that s1 6= 0 or else P has a lesser order of 2. Thus, r1 6= 0. The equation 2P = (0, 0)
means that the tangent line to E at P passes through (0, 0), i.e. s1−0 = (r1−0)λ,
with λ being the tangent slope (3r21 + 2a2r1 + a4)/2s1. Therefore,

s1 = r1λ =
r1(3r21 + 2a2r + a4)

2s1
,

∴ r21 = a4.

Furthermore, a2 =
s21−r

3
1−a4r1
r21

= s21/r
2
1 − 2r1. Let d = 1 − r31/s

2
1. Then a2 =

2(1 + d)/(1− d)r1, where d 6= 0, 1, since if d = 0 then 4r31 = s21 implies

r3 + a2r
2 + a4r = r3 + 2r1r

2 + 2r21r = r(r + r1)2,

a contradiction to E being elliptic and having distinct roots. If d is a square,

then the point
(
r1(
√
d+ 1)/(

√
d− 1), 0

)
is another point of order 2 on E(k). Now

consider the two quadratic twists of E:

E′ :

(
r1

1− d

)
s2 = r3 + a2r

2 + a4r, E′′ :

(
dr1

1− d

)
s2 = r3 + a2r

2 + a4r.

If k is finite, and if d is not a square in k, then either r1
1−d or dr1

1−d is a square in k,

since the product of non-squares (e.g. d and r1
1−d ) in a finite field is a square in the

field. So E is equivalent to either E′ or E′′.
Now substitute x = r/r1 and y = s/r1. Then we see

E′ ∼=
1

1− d
y2 = x3 + 2

1 + d

1− d
x2 + x

E′′ ∼=
d

1− d
y2 = x3 + 2

1 + d

1− d
x2 + x.

We will show that u2 + v2 = 1 + du2v2 is equivalent to 1
1−dy

2 = x3 + 2 1+d
1−dx

2 + x,

which is equivalent to E′. Define the rational map (x, y) 7→ (u, v), u = 2x/y,
v = (x−1)/(x+1). There are finitely many exception points to this map, satisfying
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(x+ 1)y = 0. We will show one of the directions for birational equivalence:(
2
x

y

)2

+

(
x− 1

x+ 1

)2

= 1 + d

(
2
x

y

)2(
x− 1

x+ 1

)2

=⇒ 0 = 4x2(x+ 1)2 + y2(x− 1)2 − (x+ 1)2y2 − 4dx2(x− 1)2

= 4(1− d)x4 + 8(1 + d)x3 − 4xy2 + 4x2(1− d)

∴
1

1− d
y2 = x3 + 2

1 + d

1− d
x2 + x(1− d).

The inverse map x = (1 + v)(1 − v), y = 2(1 + v)/u(1 − v) also gives us the
backwards equivalence, with finitely many exceptions satisfying u(1−v) = 0. Now,
substituting d 7→ 1/d and x 7→ −x, then u2 + v2 = 1 + (1/d)u2v2 is birationally
equivalent to d/(1− d)y2 = x3 + 2(1 + d)/(1− d)x2 + x, which is equivalent to E′′.
In summary, the curve u2 + v2 = 1 + du2v2 is equivalent to a quadratic twist E′ of
E. If E has a unique point of order 2 then d is a nonsquare and u2 +v2 = 1+du2v2

is equivalent to a quadratic twist E′ of E. Lastly, if k is finite and E has a unique
point of order 2 then d is a nonsquare so E is isomorphic to E′ or to E′′; thus E is
birationally equivalent to u2 + v2 = 1 + du2v2 or to u2 + v2 = 1 + (1/d)u2v2. �

As will be discussed in a further section, elliptic curves are very popular in cryp-
tographic applications. Cryptography involves performing operations over finite
fields, and every finite field of characteristic not 2 contains a nonsquare element,
so part (iii) of the previous theorem applies to any cryptographic application. In
Edwards’ original paper, he showed the following:

Proposition 3.3. An elliptic function field is birationally equivalent to the field of
rational functions on x2 + y2 = a2 + a2x2y2 for some a ∈ k such that a5 6= a.

As seen, Edwards’ original “Edwards” curve is of a slightly different form (namely,
c = a, d = 1). We wonder whether this form is equivalent to either of the two forms
u2 + v2 = c2(1 + du2v2) or u2 + v2 = 1 + du2v2. Recall we were able to show
the equivalence of the two Edwards forms introduced in 3 by means of the bira-
tional equivalence u = u/c, v = v/c, d = dc4. The inverse transformation does
not require any field extensions either. However, let us try to produce a map be-
tween u2 + v2 = c2(1 + du2v2) and x2 + y2 = a2 + a2x2y2. Notice u = x/d1/4,
v = y/d1/4, c = a/d1/4 produces the correct mapping, but requires a field ex-

tension of to k
(

4
√
d
)

. We can construct the map between the remaining pair

u2 + v2 = 1 + du2v2 and x2 + y2 = a2 + a2x2y2 is u = x/(cd1/4), v = y/(cd1/4),
d = a4, which still requires the same field extension.

4. Addition on an Edwards Curve

The following is the addition formula originally posed by Edwards, which applies
to an Edwards curve with d = 1 and c = a.

Theorem 4.1. If a is a constant for which a4 6= 1, then the addition formula for
the elliptic curve x2 + y2 = a2 + a2x2y2 is

X =
1

a
· x1y2 + x2y1

1 + x1y1x2y2
, Y =

1

a
· y1y2 − x1x2

1− x1y1x2y2
.
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What makes the above formula so special is its almost symmetric treatment of
x and y, as well as its admission of a simple identity element: (0, c). Moreover,
Edwards goes on to show that all elliptic curves over a non-binary finite field may
be transformed to Edwards form. Some require a field extension for the transforma-
tion, but some elliptic curves have transformations defined over the original field.
Bernstein and Lange broadened Edwards’ addition formula to the general Edwards
curve with cd(1− dc4) 6= 0.

Theorem 4.2. For a fixed field k of characteristic different than 2, fix c, d ∈ k
such that cd(1− dc4) 6= 0. Then the Edwards addition law is

(u1, v1), (u2, v2) 7→
(

u1v2 + v1u2
c(1 + du1u2v1v2)

,
v1v2 − u1u2

c(1− du1u2v1v2)

)
= (u3, v3).

on the Edwards curve u2 + v2 = c2(1 + du2v2) over k. We claim (u3, v3) lies on
the curve u2 + v2 = c2(1 + du2v2). We are under the assumption that du1u2v1v2 6∈
{−1, 1}.

Proof. Define T = (u1v2+v1u2)2(1−du1u2v1v2)2+(v1v2−u1u2)2(1+du1u2v1v2)2−
d(u1v2 + v1u2)2(v1v2 − u1u2)2. We claim that

T = (u21 + v21 − (u22 + v22)du21v
2
1) · (u22 + v22 − (u21 + v21)du22v

2
2).

This can be checked by direct calculation. Next, combine the two conditions on
(u1, v1), (u2, v2):

u21 + v21 = c2(1 + du21v
2
1)

− [(u22 + v22)du21v
2
1 = c2(1 + du22v

2
2)du21v

2
1 ]

u21 + v21 − (u22 + v22)du21v
2
1 = c2(1− d2u21u22v21v22)

= u22 + v22 − (u21 + v21)du22v
2
2 .

The final equality follows by similar combination of equations using a different
factor: du22v

2
2 . It follows that T = c4(1 − d2u21u22v21v22)2. Finally, we if (u1, v1) +

(u2, v2) = (u3, v3), we have

u23 + v23 − c2du23v23

=
(u1v2 + v1u2)2

c2(1 + du1u2v1v2)2
+

(v1v2 − u1u2)2

c2(1− du1u2v1v2)2
− c2d(u1v2 + v1v2)2(v1v2 − u1u2)2

c4(1 + du1u2v1v2)2)(1− du1u2v1v2)2

=
T

c2(1 + du1u2v1u2)2(1− du1u2v1v2)2
=

T

c2(1− d2u21u22v21v22)2
= c2.

Thus, (u3, v3) ∈ F (k). �

Remark 4.3. Notice, as in Edwards’ original formula, (0, c) is the neutral element
of the more general addition law. Notice also that (0,−c) has order 2, while (c, 0)
and (−c, 0) have order 4.

Theorem 4.4. For a fixed field k of characteristic different than 2, fix c, d ∈ k
such that cd(1− dc4) 6= 0. Let e = 1− dc4, and E be the elliptic curve

E :
1

e
x2 = y3 =

(
4

e
− 2

)
x2 + x.
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Let (u3, v3) = (u1, v1) + (u2, v2). For each i ∈ {1, 2, 3} define Pi as follows:

Pi :=


∞ if (ui, vi) = (0, c)

(0, 0) if (ui, vi) = (0,−c)
(xi, yi) if ui 6= 0,

where xi = (c + vi)/(c − vi) and yi = 2c(c + vi)/(c − vi)ui. Then Pi ∈ E(k) and
P1 + P2 = P3.

A full proof of this fact exists in Bernstein and Lange’s work. The proof is
split into many cases, but below is a partial look into it; specifically, under the
assumption that x1 6= x2.

Partial Proof of Thm 4.4. If x1 6= x2, then the standard addition formula says

(x1, y1) + (x2, y2) = (r, s),

where λ = (3x21 + 2(4/e− 2)x1 + 1)/((2/e)y1), r = (1/e)λ2 − (4/e− 2)− 2x1, and
s = λ(x1 − r) − y1. It is left to check that (r, s) = (x3, y3). The left side has
a relatively complicated dependence on (u1, v1), and (u2, v2), so it takes a lot of
algebraic manipulation to show their equality. Nevertheless, addition matches be-
tween standard formulas and Edwards formulas, showing that Edwards coordinates
provide a unique opportunity to perform addition on elliptic curves. Notice that
the only chance of this formula being incomplete is when the denominator of either
coordinate is zero, or du1u2v1v2 ∈ {−1, 1}. �

What more, if d is not a square, it can be shown that there are no exceptional
points in Edwards’ addition formula, i.e. the Edwards addition law is complete.

Theorem 4.5. Let k be a field in which 2 6= 0. Let c, d, e be nonzero elements
of k with e = 1 − dc4. Assume that d is not a square in k. Let u1, v1, u2, v2 be
elements of k for which u21 + v21 = c2(1 +du21v

2
1) and u22 + v22 = c2(1 +du22v

2
2). Then

du1u2v1v2 6= ±1.

Proof. Let ε = du1u2v1v2, and suppose ε ∈ {−1, 1}. then u1, u2, v1, v2 6= 0. Fur-
thermore,

du21v
2
1(u22+v22) = c2(du21v

2
1+d2u21u

2
2v

2
1v

2
2) = c2(du21v

2
1+ε2) = c2(1+du21v

2
1) = u21+v21 .

Thus,

(u1 + εv1)2 = u21 + v21 + 2εu− 1v1 = du21v
2
1(u21 + v21) + 2u1v1du1u2v1v2

= du21v
2
1(u21 + 2u2v2 + v21) = du21v

2
1(u2 + v2)2.

With this, if u2 + v2 6= 0, then d = ((u1 + εv1)/(u1v1(u2 + v2)))2, meaning d is
a square. This is a contradiction. Similarly, if u2 − v2 6= 0, then d = ((u1 −
εv1)/(u1v1(u2 − v2)))2, meaning d is a square, again a contradiction. However, if
both u1 + v1 = 0 = u1− v1, then both are zero, which is another contradiction. �

5. Applications

For assessing the efficiency of the following algorithms, I will use the same nota-
tion as Bernstein and Lange, as I believe it is standard to count different operations
with as much detail as possible in order to be able to discern computational-time
differences between algorithms for different computing systems. Separate tallies
of the number of general multiplications (costing M), squarings (each costing S),
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multiplications by c (each costing C), multiplications by d (each costing D), and
additions/subtractions (each costing A). Each of these costs depend on the com-
puting platform, the choice of a finite field, and on the choice of c and d.

We are specifically interested in analyzing the algorithm for Edwards addition.
Using the affine formula introduced in the previous section is not suitable for cryp-
tographic purposes due to side-channel attacks (or physical indications of private
information). Notice also that in the Edwards addition law, two inversion opera-
tions appear. Inversion typically runs one to two orders of magnitude slower than
multiplication for a computing system, so it is undesirable to have such opera-
tions. Luckily, expressing Edwards addition in projective coordinates eliminates
inversions. Let’s use the projective coordinates (X : Y : Z) to represent the affine
coordinate (x, y) = (X/Z, Y/Z). Other systems have different relations, such as the
Jacobian system with (x, y) = (X/Z2, Y/Z3).

In projective homogeneous coordinates, we homogenize the affine Edwards curve
equation x2 + y2 = c2(1 + dx2y2) to (X2 + Y 2)Z2 = c2(Z4 + dX2Y 2). The neutral
element is (0 : c : 1), while the inverse of an element (X : Y : Z) is (−X : Y : Z).
In projective homogeneous coordinates, addition is given by (X3 : Y3 : Z3) = (X1 :
Y1 : Z1) + (X2 : Y2 : Z2), where

X3 = Z1Z2(Z2
1Z

2
2 − dX1X2Y1Y2) ((X1 + Y1)(X2 + Y2)−X1X2 − Y1Y2) ,

Y3 = Z1Z2(Z2
1Z

2
2 + dX1X2Y1Y2)(Y1Y2 −X1X2),

Z3 = c · (Z2
1Z

2
2 − dX1X2Y1Y2)(Z2

1Z
2
2 + dX1X2Y1Y2).

One can check that x3 = X3/Z3 and y3 = Y3/Z3 to verify the addition formula in
projective coordinates matches the definition of that on the affine curve. Obviously,
for the sake of mathematical simplicity,

X3 = Z1Z2(Z2
1Z

2
2 − dX1X2Y1Y2) (X1Y2 + Y1X2) .

However, because the quantities X1Y1, X2Y2, X1 + Y1, and X2 + Y2 are already
computed for Y3 and Z3, we do not need to perform X1Y2 nor Y1X2. We may
observe the full procedure by explicitly providing the sequence of operations and
registers involved with a general addition calculation.

Addition Algorithm: Let R1, R2, R3 hold X1, Y1, Z1 initially, R4, R5, R6 hold
X2, Y2, Z2 initially, and let R7, R8 be temporary registers, with c and d being

constants. Perform

R3 ·R6 → R3;R1 +R2 → R7;R4 +R5 → R8;R1 ·R4 → R1;R2 ·R5 → R2;

R7 ·R8 → R7;R7 −R1 → R7;R7 −R2 → R7;R7 ·R3 → R7;R1 ·R2 → R8;

d ·R8 → R8;R2 −R1 → R2;R2 ·R3 → R2;R2
3 → R3;R3 −R8 → R1;

R3 +R8 → R3;R2 ·R3 → R2;R3 ·R1 → R3;R1 ·R7 → R1; c ·R3 → R3.

Registers R1, R2, R3 end containing X3, Y3, Z3, respectively. One may count this
algorithm uses 10M + 1S + 1C + 1D + 7A.

A similar algorithm slightly changes the operations involved, obtaining

Z1Z2(Z2
1Z

2
2 − dX1X2Y1Y2), Z1Z2(Z2

1Z
2
2 + dX1X2Y1Y2), and

(Z2
1Z

2
2 − dX1X2Y1Y2)(Z2

1Z
2
2 + dX1X2Y1Y2)
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as linear combinations of (Z1Z2)2, (Z2
1Z

2
2 )2, (dX1X2Y1Y2)2, (Z1Z2 + Z2

1Z
2
2 )2, and

(Z1Z2 + dX1X2Y1Y2)2. This changes 10M + 1S to 7M + 5S. In many systems,
the ratio S/M < 3/4, meaning this change is favorable for running time. More
algorithms exist for mixed addition (where Z2 = 1), and doubling (where (X1 :
Y1 : Z1) = (X2 : Y2 : Z2)). For instance, an algorithm for doubling can be reduced
to 3M + 4S + 5C + 6A with two temporary registers; if temporary registers are
expensive, a variation using only one increases the number of additions to seven:
7A.

Coordinate systems on elliptic curves is a game of applying various “trivial” ma-
nipulations to formulas until finding an efficient algorithm for performing a desired
operation. For instance, Edwards coordinates would not be so revolutionary (in
cryptography) without the addition algorithm given above for its projective coordi-
nate representation. A decade ago, Bernstein and Lange compared their Edwards
addition algorithm to those of previously developed representations. Below is a
subset of their analysis.

System ADD (1,1) (0.8,0.5) (0.8,0)
Jacobian 11M + 5S 16M 15M 15M
Projective 12M + 2S 14M 13.6M 13.6M
Jacobi Quartic 10M + 3S + 1D 14M 12.9M 12.4M
Hessian 12M 12M 12M 12M
Edwards 10M + 1S + 1D 12M 11.3M 10.8M

The ordered pairs in the last few columns represent possible values for the ratios
(S/M,D/M). Regardless, Edwards addition will always perform at least as well
as any of the other addition algorithms for elliptic curves in this chart.

Elliptic curves are generally used for cryptography due to their group structure,
which immediately implies the Discrete Logarithm problem on the set. A public
observer can be aware of a curve being generated by point P ∈ E(k) and aware of a
point Q ∈ E(k) (i.e. a multiple of P ). Information is leaked if the observer can find
the positive integer n such that Q = nP . However, this is a nontrivial task that
is very hard to compute outside of a few specific, degenerate curves. The discrete
logarithm problem applies to any finite field. Another popular example is finding
the factors of a very large product of two large primes. Cryptography relies on
processes which can be computed efficiently in one direction and ability of choice,
but may not be undone efficiently or all too methodically. Authors of elliptic curve
algorithms on E(k) wish to make this forward process as efficient as possible, while
also ensuring the chosen elliptic curves or representations are not vulnerable for
attacks that compromise the security of the discrete logarithm problem.

Since 2007, mathematicians have developed inverted Edwards coordinates (which
do not offer complete, but strongly unified, addition formulas), and extended coor-
dinates for Edwards curves. The coordinates in inverted Edwards are of the form
(x, y) = (Z/X,Z/Y ), and offer a slightly faster set of operations than the standard
coordinates. Extended Edwards coordinates are even faster than inverted coordi-
nates, and are of the form ax2 + y2 = 1 + dx2y2, and are all twists of Edwards
curves, whose a = 1.
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6. Parameterization

Another application to Edwards form requires some more theory. Parameteriza-
tions of elliptic curves are of particular interest for calculations on and classifications
of them. Edwards proposes a particular function given one parameter τ that pa-
rameterizes elliptic curves in Edwards form over t ∈ C. Because Edwards form
treats x and y identically, they may be parameterized by meromorphic functions
only different by some phase shift, similar to how sin(t) and cos(t) = sin(t + π/2)
are essentially the same function, only off by some phase shift, that parameterize
ellipses.

Theorem 6.1. Given a complex τ ∈ H, where H is the upper half plane, then

ψ(t) =

∑
n odd e

iπ
(
n2

2 ·τ+nt
)

∑
n even e

iπ
(
n2

2 ·τ+nt
)

defines a meromorphic function of a complex variable t with the following properties:

(i) ψ(t+ 1) = −ψ(t).
(ii) ψ(t+ τ) = 1/ψ(t).

(iii) The periods 2 and 2τ form a period basis of ψ.
(iv) The only zeros of ψ(t) in the period parallelogram {r + sτ : ≤ r < 2, 0 ≤ s < 2}

are at 1/2 and 3/2, meaning the only poles in this parallelogram are at
1/2 + τ and 3/2 + τ .

(v) ψ(τ/2) = 1.
(vi) ψ(τ/2− 1/2) = i.

(vii) Properties (i)-(v) uniquely determine ψ(t).

The proof of this theorem is very straightforward and only requires a few sub-
stitutions and extraneous multiplications by eiπτ/2+t to the numerator and denom-
inator in the proof of (i). The final item requires an argument about the quotient
of two doubly periodic meromorphic functions with the same poles and zeros being
constant.
If τ is given, let φ(t) = ψ(t − 1/2). Notice φ(t)2 + ψ(t)2 and 1 + φ(t)2ψ(t)2 are
doubly periodic functions with periods 2, 2τ , and same singularities. This means
their quotient is constant. At t = 0, we have this constant is ψ(0)2. Therefore,
φ(t)2 + ψ(t)2 = ψ(0)2 + ψ(0)2φ(t)2ψ(t)2, meaning the map t 7→ (φ(t), ψ(t)) for
a given τ maps the complex t-plane in a doubly periodic way onto the Riemann
surface x2 + y2 = a2 + a2x2y2 for a = ψ(0). We have reduced the problem of
parameterizing x2 + y2 = a2 + a2x2y2 to finding τ for given a such that

a =

∑
n odd e

iπn2

2 ·τ∑
n even e

iπn2

2 ·τ
.

Without going too much further into the analysis, I will present some results. It
is possible to make sense of a fundamental domain of a under the modular group
PSL(2,Z). In fact,

Proposition 6.2. The elliptic function field determined by x2 + y2 = a2 + a2x2y2

is equivalent to the one determined by x2 + y2 = b2 + b2x2y2 whenever b has one of
the 24 values

iεa,
iε

a
, iε · a− 1

a+ 1
, iε · a+ 1

a− 1
, iε · a− i

a+ i
, iε · a+ i

a− i
,
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where i is a square root of −1 that is to be adjoined, if necessary, to the field of
constants, and where ε ∈ {0, 1, 2, 3}.

Proof. The values listed for b are the orbit of a under the group of fractional linear
transformations of the Riemann sphere generated by the two transformations a 7→
ia and a 7→ a−1

a+1 . This group is actually isomorphic to the group of the cube; the
first map permutes 1 7→ i 7→ −1 7→ −i 7→ 1 cyclically, leaving 0,∞ fixed, while
the second permutes 1 7→ 0 7→ −1 7→ ∞ 7→ 1 cyclically, leaving ±i fixed. The
proposition will be proved if the function field of x2 + y2 = a2 + a2x2y2 is shown
to be equivalent to the two function fields obtained by replacing a with its image
under the two generators a 7→ ia and a 7→ a−1

a+1 . For this, it will suffice to show

that there exists a fractional linear transformation that carries (a,−a, 1/a,−1/a)
to the set (b,−b, 1/b,−1/b), which is true since x 7→ ix is such a fractional linear
transformation in the first case, and x 7→ x−1

x+1 is so in the second. �

The homomorphism from the modular group to the 24 fractional linear trans-
formations of a has kernel which is a normal subgroup of index 24. We can show
that φ′(t) = µ · ψ(t)(1− a2φ(t)2) for some constant µ ∈ C. Then

τ =

∫ i
0

dx
y(1−a2x2)∫ a

0
dx

y(1−a2x2)

.

This quotient of path integrals in the domain of a is evaluated by means of some
bisection method which follows by the doubling formula obtained from 4.1:

φ(2t) =
1

a
· 2φ(t)ψ(t)

1 + φ(t)2ψ(t)2
, ψ(2t) =

1

a
· ψ(t)2 − φ(t)2

1− φ(t)2ψ(t)2
.

The bisection method relies on gathering (φ(t), ψ(t)) from (φ(2t), ψ(2t)).
Let (φ(2t), ψ(2t)) = (X,Y ), and (φ(t), ψ(t)) = (x, y). Then a(1−x2y2)Y = y2−x2,
and multiplication of this equation by 1− a2x2 and use of y2(1− a2x2) = a2 − x2
gives

aY (1− a2x2)− aY x2(a2 − x2) = a2 − x2 − x2(1− a2x2),

⇐⇒ (aY − a2)x4 + 2(1− a3Y )x2 + (aY − a2) = 0.

It follows that if x is a known solution to this equation, then so too will −x,±1/x.
Moreover, once x is known, y2 = (a2−x2)/(1− a2x2) is uniquely determined, with
X = 1

a
2xy

1+x2y2 determining the sign of y. So knowledge of (φ(2t), ψ(2t)) actually

reduces to four possible values of (φ(t), ψ(t)). Since we may take relatively small
steps while traversing the integrals’ paths, one can use distance information to
choose the most likely value for the next step along the path. We have seen our
method for parameterizing a given Edwards curve, and hence, any elliptic curve,
over sufficiently extended fields.
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