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The Algorithmic Theory of Information and its Applications to Geometric Measure Theory
Background
Motivation

Hausdorff Measures

We work over a metric space (Q, d) and consider a typical family of outer
measures on this space.

Definition (H*-Measures)

For any s > 0, define the s-dimensional Hausdorff outer measure of a subset
X cQtobe:

550 Udiew

H*(X) = sup inf {Z diam(U;)° : diam U; < 6 and U u; 2 X}

Observation:
o H*(X) < oo implies H**(X) = 0 for all s, > s.
o H*(X) > 0implies H*-(X) = coforall 0 <s_ <s.

1/53



The Algorithmic Theory of Information and its Applications to Geometric Measure Theory
Background
Motivation

Hausdorff Dimension

The map s — H*(X) looks like a step function:

[ee)

(}-{dimH(X)(X) =7

0 s 1

This motivates the definition for the Hausdorff dimension of a set X :

dimy(X) := inf{s > 0: H*(X) = 0}.
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Background
Motivation

Mathematical Context

A primary goal of Geometric Measure Theory (GMT) is to understand the
fractal properties of sets (e.g., measure and dimension).
Examples:

e Marstrand-Mattila Projection Theorem: on achieving large Hausdorff
dimension under orthogonal projections,

e Kakeya Problem: on the Hausdorff dimension of sets which largely
intersect with a line in each direction,

e Besicovitch’s Theorem: on the existence of closed subsets of positive,
finite H°-measure.
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Background
Motivation

Mathematical Context

A primary goal of Algorithmic Information Theory (AIT) is to study a robust
notion for the information content of a piece of data and for algorithmic
randomness.

Three Paradigms:
¢ Unpredictability: algorithmic mass spreading or betting strategies,
e Typicality: algorithmic randomness tests,

e Incompressibility: complexity w.r.t. universal Turing machines.
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Background
Motivation

Mathematical Context

Progress in the 2000s in connecting the GMT and AIT pursuits:

e Correspondence Principle: a pointwise formula for Hausdorff
dimension for simple sets,

e Point-to-Set Principle: this formula relativized applies to general sets,

e Finer point-to-set principles: pointwise formulas and conditions for the
Hausdorff H*-measures.

Theorem (Point-to-Set Principle for dimy over IR”; J. Lutz & N. Lutz 2018)

For any X € R", we have

dimy X = min sup dim®(x).
Be2sw . x
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Background
Motivation

Applying AIT to GMT

e The power of PTS is in proving lower bounds for dimy: if B is an oracle
witnessing PTS for X, then

(Ax € X)[dim®P(x) > s] = dimp X > s.

e The effective dimension of a real x is the limiting value of normalized
Kolmogorov complexity: K(x I r)/r, along its dyadic approximations.
So, we may argue on the level of dyadic approximations:

VOn[K(x I r) >* sr] = dim(x) > s.
e Thus, AIT might offer a finer language for deducing geometric measure

theoretic results: they follow from statements about individual points
and their approximations.
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Background
My Work

Where My Dissertation Fits In

1. How does effective dimension behave under conditioning?

o Establish stronger robustness properties of effective dimension over
Euclidean space.

2. How does effective dimension distribute along function graphs?
e Elucidate the distribution of effective dimension over Euclidean space.

3. Can we develop AIT for GMT on a broader class of metric spaces?

o Leverage the combinatorial structure of nets to algorithmically characterize
fractal properties over a more generic class of metric spaces.

4. Put these ideas to work.
o Witness GMT results via effective arguments.
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Robustness
Computability Theory

Computability Theory

Let M be a Turing machine (TM) from natural numbers to natural numbers.

e M computes a partial function @y :C w — w satisfying

[n € dom(Dy) &< M(n)]] and [n € dom(Dy) = M(n) |= Dy(n)].

M computably enumerates A C w if A is the range of ®y;.

There exists a universal TM U which simulates all other TMs.

One may relativize these notions for oracle machines which also accept
oracles of the form B € 2.

e Lower-semicomputability: the ability to computably approximate a
quantity or function from below, i.e.,

e Forx € R: if its left-Dedekind cut { € Q : g < x}is cee,,
e Forf:w — R: if its lower graph {(0,9) € v X Q : q < f(0)} is c.e., or

often expressible as having a computable function lower-approximating f.

8/53



The Algorithmic Theory of Information and its Applications to Geometric Measure Theory
Robustness

Kolmogorov Complexity

Incompressibility & Kolmogorov Complexity

The Kolmogorov complexity of some data x captures the minimal length of a
program which produces x. Fixing some universal Turing machine U (able to
simulate all other Turing machines on all inputs), define:

C(x) = min {len(program) : U(program) = x}.
There is also a conditional version:

C(x | y) = min {len(program) : U({program, y)) = x}.

More often, a universal prefix-free Turing machine Upr is used, which is only
able to halt on a prefix-free set of programs. This defines prefix complexity:

K(x) = min {len(program) : Upg(program) = x}.
K(x | y) = min {len(program) : Upp({program, y)) = x}.

Theorem (Chain Rule for Prefix Complexity, Gacs 1974)

For any finitary data x and y,

K(x,y) = K(y) + K(x | y) = [O(log len(x)) + O(1)].
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Robustness

Kolmogorov Complexity

Basic Observations for Prefix Complexity

Because Upr can simulate any algorithm, the complexity of any input cannot
be exceeded by the complexity of its output.

Given a Turing machine @ (i.e., algorithm) and finitary input x, it holds that

K(D(x)) < K(x) + Og(1).

A corresponding version exists for conditional complexity.

Theorem (Kraft Inequality)

D o OHTE

0€2<@

.

Theorem (Chaitin’s Counting Theorem 1976)

There exists a constant ¢ > 0 such that for any n,r € @,
1. max{K(o): 0 € 2"} = n+ K(n) £ ¢, and
2. l{o € 2" : K(0) < n + K(n) — r}] < 2"+,

.
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Robustness

Kolmogorov Complexity

Lifting K to Euclidean Space

Take any subsets X C R" and Y € IR".

Following A. Shen and N. Vereshchagin, define the conditional prefix
complexity of X given Y as:

KXIY) :=max{mpin{K(p|q):p€XﬂQm}:quﬂQ"},
q

while the prefix complexity of X is just:
K(X) :=min{K(p): pe XNQ"}.

Take any x € R” and y € IR".

The conditional prefix complexity of x to precision-level r given y to
precision-level s is:

Krls (x | y) =K (BZ"(x) I B2’5 (y)) ’
while the prefix complexity of x to precision-level r is:
K;(x) := K(Bay(x)).
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Robustness

Kolmogorov Complexity

Known Approximations and the Chain Rule

Restricted versions of the Chain Rule and approximations to Ky are known
and have been used.

Fixmnew,xeR",yeR", andr >s5 € w.

Lemma (Approximations by Dyadic Truncations; N. Lutz & D. Stull 2020)

Kys(x ly) =K@ [ 7]y I s) £[O(logr) + O(logs) + Oy,.(1)].

Theorem (Approximate Chain Rule for K;; N. Lutz & D. Stull 2020)

Kr(xr ]/) = Kr(]/) + Kr\r(x | y) + [O(log r) + Om,n,y(l)]~
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Robustness

Kolmogorov Complexity

Robustness of the Lift

The definition is robust up to a reordering of optimizers:

Proposition (Robustness of the Lift)

minmaxK(p | ) ® maxmin K(p | g).
Pooa 7

So, the optimizations may be performed independently:

Lemma (Conditional Approximation by K-Minimizers)

Ifp*, q*, w* denote the K-minimizers of By (x), By~ (y), and B,-:(z), respectively,

Kiqi(x,y | 2) = K(p*, q" | w").

Both these equalities hold up to sub-linear terms:

+[O(logr) + O(l0g s) + Opy(1)]
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Robustness

Kolmogorov Complexity

Main Result for Prefix Complexity

Theorem (Conditional Chain Rule for Conditional Complexity)

Letm,n,{ € w,x € R", ye R, z€ R, and r,s,t € w. Then,
Kise(,y 1 2) = Kge(y | 2) + Kygsi(x | y, 2),

with equality holding up to + [O(log r) + O(logs) + Oy (1)]
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Robustness

Effective Dimension

Effective Dimension

In 2002, E. Mayordomo established what is now the most commonly used

definition for effective Hausdorff dimension using a quantity first studied by
L. Staiger in 1989.

Definition

Take the effective (Hausdorff) dimension of a real x € R to be its lower
incompressibility ratio with respect to prefix complexity:

dim(x) = hm mf i ») € [0,1].

In fact, the limit superior gives an effective analog of packing dimension.

Take the effective packing dimension of a real x € R to be its upper
incompressibility ratio with respect to prefix complexity:

Dim(x) = lim sup : ») € [0,1].

r—oo

15/53



The Algorithmic Theory of Information and its Applications to Geometric Measure Theory
Robustness
Effective Dimension

Variant 1: Mutual Dimension

One variant of effective dimension is mutual dimension as defined by A.
Case and J. Lutz in 2014.

Definition (Mutual Information)

Leta,be2,xe XCR",ye YCR" and 7,5 € w.
e I(a:Db):=K(a) — K(a | b) ~ K(a) + K(b) — K(a, b),
e [(X:Y):=min{l(p:g):peXNQ"and g€ Y NQ"},
o Iis(x : y) := I(Byr(x) : Bo~s(y))

Definition (Lower and Upper Mutual Dimensions)

o exey) L
mdim(x : y) := iminf — and Mdim(x : y) := limsup

r—oo

L (x:y)
——.
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Robustness
Effective Dimension

Variant 2: Conditional Dimension

A conditional version of effective dimension was first defined by J. Lutz and
N. Lutz in 2018.

Definition (Lower and Upper Conditional Dimensions)

Krlr(x | y)
r

, and Dim(x|y) = limsup

r—oo

KT’ r
dim(x | y) = lim inf | (Jrc ly)

Theorem (Chain Rule for Conditional Dimension; J. Lutz & N. Lutz 2018)

dim(x) + dim(y | x) < dim(x, y) < dim(x) + Dim(y | x) < Dim(x, y) < Dim(x) + Dim(y | x).)
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Robustness

Effective Dimension

Effective Dimension Variants and Transformations

Using the conditional Chain Rule for Ky, we extend the work of J. Reimann,
A. Case, and J. Lutz, confirming that conditional dimension behaves
predictably under computable, uniformly continuous maps.

Theorem (Invariance)

Suppose f : R" — R and g : R" — R" are both bi-computable and bi-Lipschitz
continuous. Then,

dim(f(x) | g(v)) = dim(x | ).

As dim(- | -) and mdim(- : -) are both invariant under these maps, we might
view the effectivization of fractal geometry modulo the group of
bi-computable, bi-Lipschitz continuous transformations.
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Robustness
Effective Dimension

Relating the Effective Dimension Variants

Another consequence of the conditional Chain Rule:

Proposition (Inclusion-Exclusion, partially due to A. Case & J. Lutz 2014)

For each x € R™ and y € R",

dim(x | y) < dim(x) — mdim(x : y) < Dim(x | y),
dim(x | y) £ Dim(x) — Mdim(x : y) < Dim(x | v).

K )

Ki(x,y)
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Effective Dimension along ,Function Graphs
Lower Bound Result for Points on Lines

Points on Function Graphs

Problem: Given f : R — R, how does dim(x, f(x)) relate to dim(x) and f?
e f being computable and Lipschitz continuous = dim(x, f(x)) = dim(x).

e Otherwise, suppose f is computable given some parameters &. What
uniform continuity properties guarantee a relation between dim(x, f(x))
and dim(x), dim(a), etc.?

In 2017, N. Lutz and D. Stull established a result on the effective dimension of
points on a planar line:

Theorem (Points on Planar Lines, N. Lutz & D. Stull 2017)

For everya,b,x € R,

dim(x, ax + b) > dim(x|a, b) + min {dim(a, b), dim"”’(x)} .
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Effective Dimension along ,Function Graphs
Computable, Absolutely Lipschitz Families

Framework for Function Families

Planar Lines. Recast the family of non-vertical lines written in
slope-intercept form,

P:RZXxR - R; ®(a,b,x) = ax + b.

Going forward, fix some slope-intercept pairs (a, b) and (1, v), and inputs
X1,X2 € R.

More generally, a computable absolutely Lipschitz family (CALF) takes the
form of a partial computable map, @ :C R” X R* — RR".

Fix two parameters o, f € R". It might happen that only certain components
cause the value of ®* — @F to vary independently of ||x]|, i.e.,

[ @ (x) - ' (x) — (©(x) - P (x))|| < O(llev’ - axll +|

B - )

Collect into (a — f)., all the rest.
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Effective Dimension along ,Function Graphs
Computable, Absolutely Lipschitz Families

Required Property: Scaling Lipschitz Continuous

Planar Lines. By the triangle inequality,

l(@-x1+b) = (u-x2+ )| < (1| + 1+ |1 — x20) - [l(a, ) = (w, )| + lal - |x1 = x|

Scaling Lipschitz Continuous. For all &, f and x1, x5,

[|@%(x1) = PP ()| < (O(lleall + 1) + 0(1)) - || = B|| + Ollall + 1) - Ix1 = x2]l -
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Effective Dimension along ,Function Graphs
Computable, Absolutely Lipschitz Families

Required Property: Scaling co-Lipschitz Continuous Differences

Planar Lines. Two lines have constant difference iff their slopes match, and

la—ul vy =l = |[@-x1 +b) = (u-x1 +0)] = [(@- 22 + b) = (u- 22 + V)] .

Scaling co-Lipschitz Continuous Differences. For all finitary a, g, it holds
that ®@* — @F is either constant or scaling co-Lipschitz continuous,

@ = Brall - s = w2l = O|[[ @) - D(x0)] - [0 x2) - D)

and there is an algorithm deciding this from & and .
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Effective Dimension along ,Function Graphs
Computable, Absolutely Lipschitz Families

Required Property: Dense Intersections

Planar Lines. If 2 and b are r-dyadic, we have by Lutz & Stull,

e Geometric Machine Construction: may use x [ r, (ax + b) [ v, r, and
(a,b) T 1 to produce a nearby line (1o, v9) € B>-r(a, b) satisfying,

[[o - (x 1) +00] = (@x +b) 1 v| <27 (luol + |x 1 7]+ 3).

e Density Argument: there exists r-dyadic (1, v) € By--(uo,vp) such that
u # a, where y = log(2a| + |x| + 5). Moreover, (1, v) will agree in output
with (g, b) at input x up to precision 277

Dense Intersections. For all r € w, @ € D", and x € R, there is an algorithm
using x [ rand ®*(x) I r (as well asr, m, n, £, and a | O(1)) to compute a
(27" - Oyal uil,mn(1))-approximation to some f € Bo-r.0, () (@) N D}
satisfying ®* — ®F is scaling co-Lipschitz continuous with

—log, ||(01 - ,B)cL” <7 = Oy Jillmn (1)
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Effective Dimension along ,Function Graphs
Results for CALFs

Results for CALFs

Theorem (Finitary Theorem)

Let ® :C R" x R - R" bea CALE Let d < 6 € [0, €] and & and x be r-dyadic.

If foreachk < r: K(a [ k) > dk—o(k), and K(x[k|a)>0k—o(k),

K —dr _ o(r).

Then : K(x, %(x)) > K(at, x) —m 5_ 4

.

Theorem (Infinitary Theorem)

Let ®: R" x R —» R" be a CALE. Then, for every a and x,

dim(x, @*(x)) > dim(x|a) + min {dim(a), dim*(x)} .

.

Theorem (Dimension Spectrum)

For every a € Q and 6 € (0, £), we have

dimgy ({x e R’ : dim(x, *(x)) < & + W}) < 6.

€
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GMT by AIT on Nets

Algorithmic Randomness

Cantor Space

Cantor space: 29, the space of all infinite binary sequences. Viewed as the
space of extensions to all the finite binary strings 2<¢.

Cylinder sets: B, the collection of all clopen cylinders:

[o]:={x€2?:0<x}, where o0€2.

Compatible Metric: with respect to the product topology on 2¢,

2N ifx #yand N = min{n € w : x(n) # y(n)},
d(x,y>::{o ey { yo)
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GMT by AIT on Nets
Introducing Nets

Prototypical Nets

Nets are modeled on the prototypical countable, nested, and computable
collections of subsets. These collections also facilitate AIT.

e The family Q" of dyadic rational cubes in R":

e The basis 8 of clopen cylinders on Cantor space 2:
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Rogers’ nets

28/53



The Algorithmic Theory of Information and its Applications to Geometric Measure Theory
GMT by AIT on Nets
Introducing Nets

Basic Observations about Nets

Observations:

e C-relation on N induces a tree structure, and a rank:
rank(N) := 1 + max {rank(N") : N C N’ € N}.

e For any x € Q, denote the set of representations: R(x), of x:

(Vn)[xe N;,] and diam(N;,) = 0asn — oo.

In

e Net spaces generalize Mayordomo's nicely covered spaces.

e Any separable, ultrametric space possesses many nets. This holds for the
spaces: 2¢, R", w®, and Q,.
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GMT by AIT on Nets
Measures and Hausdorff Dimension

Measures on Metric Spaces

An outer measure on metric space (Q,d) is a function p : P(Q) — [0, +c0] satisfying
e Monotonicity: XCY C QO = u(X) < u(Y),
e Countable Subadditivity: u (U; X;) < Y.; u(X)).

There is a standard method for producing outer measures from premeasures.

Theorem (Rogers’ “Method I1")

If p is a premeasure on C C P(Q), define for each X € Q and 6 > 0:

Cilicw S

WP(X) {Z p(Cj) : diamy(C;) < 6, U Ci2 X} and HP(X) := szsqug(X).

Then HP is an outer measure on Q.
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GMT by AIT on Nets
Measures and Hausdorff Dimension

Hausdorff Measures

Any non-decreasing, right-continuous map # : [0, 00) — [0, co] with
h(t) =0 < t=0isa dimension function.

Associate to any dimension function & a Hausdorff premeasure:
pi(X) := (1 o diamy)(X),

and its corresponding Method II outer measure H".

The family of s-dimensional Hausdorff premeasures:
Ps := Pn,, Where hy:t— 1t forany s>0,

and their corresponding Method II outer measures H*.
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GMT by AIT on Nets
Net Measures

Net Measures

Definition

A net premeasure is a function p defined on N U {0} such that

p@) =0 and 0<p(N)<+c forall NeN.

Fix a procedure from premeasures to outer measures in a net N:

Method II (in N) : premeasure p — net measure (H ' N)?,

where (H [ NP(X) := sup 1r1f {Z p(N;) : (Nj); a 6-cover of X}

550 (

Restricting p; to N produces the net premeasure p, [ N, satisfying:

HEN = (H T N
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GMT by AIT on Nets
Computability and Structure of Nets

Coverings Rooted in Nets

Hausdorff coverings:

Effectively: unif.-c.e. sequences of Z(]).

Classically: sequences of arbitrary subsets.

Net coverings:

Classically: sequences of net elements.
Effectively: unif.-c.e. such sequences.

Define the Hausdorff dimension of X restricted to N:
dimpy(X) :=inf{s > 0: (H [ N)*(X) =0}.

Here, covers may only use elements from the net, N.
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GMT by AIT on Nets
Computability and Structure of Nets

Presenting a Net

Computability: with respect to an w-presentation % of the net NV, computing:

e in: w?> — {T,L}: the containment relation,
in(i,j) & N;CN;,
e pred : w® — (T, L}: the predecessor relation,
pred(i,j) & N; S N;A(YNeN)[N;cNCN; - N=N,

e diam : w — [0, >]: the diameter function,

diam(i) = diamy(N;) = sup {p(x,y) : x,y € Ni},
e root:w — {T, L}: the roots of N,

root(l) &< (VYNeN)[IN2N; = N =Nj],

under some indexing ¢ : @ — N which respects containment.
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GMT by AIT on Nets
AIT over Net Spaces

Developing AIT over Net Spaces

Question: To what extent do the robustness and PTS results of 2¢ and IR"
extend to net spaces?

Outline:
1. Extend complexity notions.
2. Extend algorithmic randomness notions.

3. Find sufficient conditions for the various characterizations of complexity
and effective dimension to agree.

4. Conclude PTS principles.
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GMT by AIT on Nets
Net Semimeasures

Net Semimeasures

Goal: Get complexity notions by spreading mass along nets.

)

=
o

Continuous Net Semimeasure:

M : N — [0, o) such that
M(N) > Y, M©),

N’ imm. succ. of N
and 1> Y MN)
N aroot of N

Discrete Net Semimeasure:

m: N — [0,1] such that

12 ) mN).

NeN
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GMT by AIT on Nets
Net Semimeasures

Net Semimeasures

Idea: a net element is simple when a universal prior distribution (M or m) can
dedicate mass to it. Restrict semimeasures to being lower-semicomputable.

A C/D semimeasure M is optimal if for any other C/D semimeasure M:

3B > 0)(YN € N)[M(N) > - M(N)].

Continuous 3 optimal lower- A priori complexity:
Semimeasures — semicomputableM — KM(N) = —-log M(N)

Coding Theorem
Discrete 3 optimal lower- for prefix complexity:
Semimeasures — semicomputablem —  K(N)="-logm(N)
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GMT by AIT on Nets
Algorithmic Entropy

Algorithmic Complexity for Arbitrary Points and Subsets
e We have K, KM for net elements N € N C P(Q).
e Equivalent, cylinder-based characterizations K, (x) on 2¢:

Gi(x) == inf{K(0) : [0] € B>+ (%)},
H,(x) := inf{K(0) : x € [0] and diam([c]) < 27"}.

(Q,d, a) is a computable metric space if a is a dense sequence in (€, d) for
which the function mapping (i, j) = d(«a;, a;) is computable.

e When (Q, 4, a) is a computable metric space, may define:
K(X) := min {K(i) : a(i) € X}.

And if N is also layered-disjoint and compatible with a, we get a locally
optimal outer measure on Q:

x(X) == 27X,

e Under stronger grate axioms, get K(N) = K(N) and G,(x) = H,(x).
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GMT by AIT on Nets
Algorithmic Entropy

Effective Dimension Notions
Fix a net space (Q2, NV), a representation % of N, and a point x € Q.

Definition (Unpredictability)
Local dimension w.r.t. a semimeasure or outer measure i

dimyoe p(x) =  inf liminfM
oe 9= e | e log diam(N;,) f

For instance, M, m, or k.

.

Effective Hausdorff dimension:

effdim(x) := inf{s > 0 : x is not Martin-L6f-%-s-random} .

.

Definition (Incompressibility)

Incompressibility ratio w.r.t. some complexity notion C;:

C.%
dimc(x) = lim inf ,_(x)
r

.
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GMT by AIT on Nets

Algorithmic Entropy

Asymptotic Coincidences

For any represented net space (QQ, N, ) and point x € (),

dimj,. M(x) = dimjo. m(x) = cdim(x) = dimg(x) = effdim(x) .

N—— ———
semimeasures supergales compression

If N is further a layered-disjoint, computable grate:

———e e

locally optimal outer measure compression

.= dimye, %(x) = dimg(x).

——
effective coverings
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Net Dimension

Point-to-Net Principle for Net Spaces

Theorem (“Point-to-Net Principle”)
Given a net space (O, N) and X C (),

dimy (X) = irg}f dimg (X) = infsup dimg (x).
xeX

Since dimy has no computability restriction: dimy (X) < infg dimg (X).

For each dimy/(X) < s € Q, there exists a sequence (U,),e, Where each U;, C w
satisfies DW(U;) < 27" and (U}), covers X in the sense of an ML-type test.
Take any w-presentation % of N with:

7 21 EP W), : dimy(X) <5 € Q).

By definition, if s > dimy/(X), then X is covered by (L),, which is an
ML-Z-s-test. Therefore, s > dimg(X), as well. So, by definition,
dimg(X) < dimy(X). O
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PTS on Nets

Point-to-Set Principle for Net Spaces

A premeasure p is said to be comparable to p; if for all X € Q,

H(X) =0 e H(X)=0.

Theorem (Point-to-Set Principle for dimy;)

Let (Q, d) be a metric space. Suppose for each s > 0, there exists a net on Q) and a
corresponding net premeasure which is comparable to ps. Then, for each X C Q,

dimy X = }Sgg gt}sf SXI;I() dimg, ().

Example: Rogers & Davies showed any separable, ultrametric space exhibits
this richness of net measures.
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Point-to-Net Principles for H*-Measures

In GMT, one often wishes to evaluate H°(X), not just dimy X. In 2024, P. Lutz
& J. Miller provided pointwise formulas and conditions for these H* over 2.

We extended these to any represented net space, (2, N, Z).

For every X C Qand s > 0,

log(H I Ny(X) =* ilﬂ}f sup inf liminf[KM#(i,)+s- log, diam(i, )],

rex (inn€R(x) n—eo

and X is not o-finite for (H | N)° if and only if

(V%)(3x € X)[x is strong Solovay-Z-s-randomy].

43/53



The Algorithmic Theory of Information and its Applications to Geometric Measure Theory
GMT by AIT on Nets
Compact Metric Spaces

Which Spaces have Effective Nets?

Certain metric spaces admit nets which are sufficiently effectively definable.

Effective Rogers nets may be constructed on each of: 2¢, R*, w®, and Q,.

Suppose that (Q, d) is a compact, computable metric space. Then, there exists an
arithmetically definable Rogers net of L)-classes over (3, d).

Moreover, if H*(Q) = 0 for some s > 0, then for any X C Q,

dimy X = infsup dimg (x).
xeX
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Application: Extending Besicovitch’s Theorem

For a given metric space (Q2, d) and premeasure p on {2, denote:

(#) : & (YF € Q compact with H?(F) > 0)(JE C F compact)[0 < H’(E) < oo].

Theorem (Besicovitch 1952)
Let Q = R" and p = ps. Then, (+) holds.

Theorem (Rogers & Davies 1970)

Let (Q, N) be a net space and p a finite net premeasure on N such that HP has no
infinite-measure points and such that any decreasing sequence of compact sets (F,),
with HP (U, F) = 0 has HY (F,) — 0as n — co. Then, (+) holds.

Theorem (Joint work with E. Gruner and J. Reimann)

Let N be a scaling, finitely-branching, layered-disjoint net and a subbasis on (2, d)
having a net Hausdorff premeasure p. Then, (+) holds.

\
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Hausdorff Dimension under Locally Lipschitz Maps

A Short Example

Suppose there is a locally Lipschitz continuous map f : UX W — X. Then

Effective Proof.

Let B > f be a Hausdorff oracle for X and U, and a packing oracle for W.
For any point x € X there exists # € U and w € W such that for any r € w,

KB(x) = Kf(f(u, w)) < KB(u, w) + o(r) < KB(u) + KB(w) + o(r).

Let € > 0. Since B is a Hausdorff oracle for X, there exists x € X such that
dimy X < dim®(x) + ¢. Then,

dimy X — ¢ < dim®(x) = liminf

r—oo

< dim®(u) + Dim®?(w) < dimy U + dimp W.

B B B
K r(x) < lim ing K00 + K@)

r—o0 r
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Hausdorff Dimension under Locally Lipschitz Maps

Applications

Let m € w and ||||, be a norm on R™.

Theorem (Orthogonal Projections)

For each direction e € 8"~ and subset X C R™,

dimy ({”proje(x)H* (X € X}) > dimyg X — (m - 1).

Theorem (Radial Projections)

For each point z € R™ and subset X C R™,

dimgy ({ﬂ xe X}) > dimyg X — 1.
[lx = =|.

Theorem (Pinned-Distance Sets, Altaf, Bushling & Wilson 2023)

For each point z € R™ and subset X C R™,

dimyg ({||x = z||, : x € X}) = dimyg X — (m — 1).
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Orthogonal Projection Theorems

Theorem (Marstrand-Mattila Projection Theorem 1954)

Let 0 <n < mand X C R™ be analytic. Then,

dimg(proj,, (X)) = min {dimy X, 1}, for almost all n-dimensional subspaces V.

Dialogue between AIT and GMT:

e In 2018, N. Lutz and D. Stull showed the same conclusion holds when
dimy X = dimp X and n = 1, via effective arguments.

e In 2021, T. Orponen extended this for all m and 7, instead via classical,
combinatorial arguments.

e Important to Orponen’s approach are two key lemmas. In joint work
with R. Bushling supervised by J. Reimann, we prove these lemmas
using incompressibility arguments.
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“(8,5)-Sets”

Lets >0,k € w,and C > 1. A finite set P C 2<% is called a (C,27, s)-set if,

2= len(7)

|{aeP:aZT}|SC~(T) , forany te2k

Intuitively, “(6, s)-sets” are finite collections of points which are guaranteed to
not be very concentrated when viewed with granularity larger than 6.

49/53



The Algorithmic Theory of Information and its Applications to Geometric Measure Theory
Incompressibility Arguments for GMT
Incompressibility Approach to the Combinatorics of GMT

Decomposition Lemma

Proposition (T. Orponen 2021)

Lets <1,k € w, and X C 2% be covered by at most C - 2°* many (27)-balls.
Then, there exists a decomposition X = Xgood L Xpad Such that:

(1) HE(Xpaa) < 1/L, and
(ii) Xgood is contained in the (27%)-neighborhood of a (CL, 27, s)-set.

\,

Define the set of “bad strings”:
Sbad = {o e2**:[6]nX#0 and K(o)<s-len(c) — logL}.
Take Xpad = [Spaa]- Then, by the Kraft Inequality,

1 1
s _ —s-len(o) - —K(0) -
HE,(Xpad) < DWs(Spad) = Z 2 <7 2 270 < .

0€Spad 0€Spad

.
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Decomposition Lemma

Put Xgo0d := X \ Xbad, and Sgood := Xgood [ k. Then, Xgooq is contained in the
(27%)-neighborhood of Sgoed-

Claim: Sgooq is @ (CL, 275, 5)-set.
Fix 7 € 2k, If T € Spaq, then [T] € Xpag, SO Sgood has no extensions of 7.

Now, assume that T ¢ Sp.q. Since X is covered by C - 275k balls of radius 27,
we may bound the 2 *-precision complexity of any x € X:

K(x k) <s-k+1logC+ O(1).
This works for any o € X [ k:
K(0) < s5-len(o) +log C + O(1).
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Decomposition Lemma

Suppose ¢ > 1 for 0 € X | k. The Coding Theorem and Counting Theorem
together imply 7 has at most

2K(0)7K(T)+K(k)+0(loglen('[))+O(l)
many descriptions of length K(o) + O(loglen(t)) + O(1).

But any 0 > T generates a two-part description of this form. So, we may
bound the number of extensions of 7 which are “good”:
| { 0 € Xgooa [ ki 0 > T}| < max {ZK(G)—K(T)+K(k)+O(log1en(I))+O(1) coeX ) k}
< 2(5<k+10g C+0(1))—(s-len(t)—log L)+o(k)

— zs(k—len(r))+log C+log L+o(k)

= len(t) )S
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Open Questions

Further Opportunities for Research

AR RN

How does the choice of net (or, computable dense subset) on a metric
space affect its AIT?

Is there a robust version of conditional, mutual dimension?
Implications of Infinitary Theorem for CALFs to GMT?
Which other GMT results admit (or, follow from) finitary statements?

Opportunities for effectivizing the density result over Cantor or net
spaces? Reverse math, forcing notions, continuous semimeasures
approach, lowness results, etc.
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