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Abstract. Undergraduate Research is something to be revered, I swear.
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1. Introduction

2. Problem, Problems, Problemsen, Problemsens

Problem 2.1 (Original). Suppose n countries collectively possess 1 large unit of
currency in some distribution. Now suppose a random lottery system occurs repeat-
edly, randomly and uniformly selecting one country to receive a fixed fraction of all
other countries’ wealth. Is there a standard distribution describing how the wealth
is distributed between the countries in the limit of number of countries and number
of iterations?

A project set to unravel the mathematics behind this problem was initiated by
Prof. Misha Guysinsky and undergraduate student Maria Burago in early 2007.
The problem they considered was as follows.

Problem 2.2 (Burago). Suppose initial vector V is chosen with the sum of its
components being 1. Does the distribution of values within the obtained vector V ∗

converge to Benford’s distribution when the vector V is pre-multiplied by a product
of stochastic matrices that are randomly chosen from a finite, well-defined set, as
long as the ratio of the number of matrices in the product to the length of vector V
converges to infinity?

Definition 2.3. A collection of numbers are said to obey b-Benford’s distribution if
for a number in this collection, the first digit takes value d, such that d ∈ {1, ..., b−1}
(in base b ≥ 2) with a probability proportional to

logb (d+ 1)− logb d = logb 1 +
1

d
,

i.e. exactly the distance between d and d+ 1 on a logarithmic scale.
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In her thesis, Burago details the precise stochastic matrices that correspond to
the iterations acting on V ∈ Rn. Suppose upon each iteration the chosen component
k ∈ [1, n] receives 1

f of all remaining wealth, paid for by the remaining countries in

proportion to their wealth. Label such a left action on V as

Ak =



f−1
f 0 0 0 · · · 0

0 f−1
f 0 0 · · · 0

· · · · · · · · · · · · · · · · · ·
1
f

1
f 1 1

f · · · 1
f

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · f−1

f 0

0 0 0 · · · 0 f−1
f


,

V ′ = AkV.

Models for this problem naturally arose to use as approximations. A new problem
was forged:

Problem 2.4 (New). Suppose N points are distributed along a circle of circum-
ference 1, and suppose our process is to randomly delete one point, and then to
replace it by another point placed exactly at the next integer multiple modulo 1 of
an irrational number. Show that in the limit of number of points and number of
iterations that this set is equidistributed on the interval [0, 1].

Definition 2.5. A sequence (s1, s2, ...) of real number is said to be equidistributed
on a non-degenerate interval [a, b] if for any subinterval [c, d] of [a, b] we have

lim
n→∞

|{s1, ..., sn} ∩ [c, d]|
n

=
d− c
b− a

.

Rather than prove the result directly, we wish to construct a model that we
can prove provides an upper bound on the probabilities of cases greater than the
n-Benford distribution. This model looks as follows.

Definition 2.6 (Model). Let N points be placed randomly along a circle of unit
circumference. Then let each iteration performed be composed of a removal of y ≈
1000 points and then a replacement by sy points to our interval of length s and the
remainder of points to the rest of the interval.

Prof. Guysinsky and I tried many toy examples and small calculations, and here
is tangent into these calculations. Suppose our process on N points involves an
iteration of removing two points chosen uniform randomly from the N , and then
replacing exactly 1 into our segment and another into the remainder of the interval.
Suppose we begin with 0 points in our segment. Then we certainly will end this
iteration with 1 point in our interval. To set up some notation, let T = (Tij),
where Tij = Pr(j → i), or the probability of ending with i points in our segment
after beginning with j. Obviously, Tij = 0 when i − j > 1. Let’s perform some
preliminary calculations.

• T00 = 0,
• T0j = 0,
• T10 = 1,
• T11 = 1

N + N−1
N

1
N−1 = 2

N ,

• T12 = 2
N

1
N−1 = 2

N(N−1) ,
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• T21 = N−1
N

N−2
N−1 = N−2

N ,

• T(N−1)(N−1) = 2
N

• TN(N−1) = 0,
• T(N−1)N = 1,
• TNN = 0.

Outside of these special cases, if j > 1, then T(j−1)j = Pr(j → j − 1) = j(j−1)
N(N−1) ;

if j > 0, then Tjj = Pr(j → j) = 2 j(N−j)
N(N−1) ; and if j < N , then T(j+1)j = Pr(j →

j + 1) = (N−j)(N−j−1)
N(N−1) . Therefore, our matrix T looks like

T =



0 0 0 0 · · · 0 · · · 0 0 0
1 2

N
2

N(N−1) 0 · · · 0 · · · 0 0 0

0 N−2
N 4 N−2

N(N−1)
(N−2)(N−3)

N(N−1) · · · 0 · · · 0 0 0
...

...
...

...
. . .

...
. . .

...
...

...

0 0 0 0 · · · j(j−1)
N(N−1) · · · 0 0 0

0 0 0 0 · · · 2 j(N−j)
N(N−1) · · · 0 0 0

0 0 0 0 · · · (N−j)(N−j−1)
N(N−1) · · · 0 0 0

...
...

...
...

. . .
...

. . .
...

...
...

0 0 0 0 · · · 0 · · · 2
N(N−1)

2
N 1

0 0 0 0 · · · 0 · · · 0 0 0



.

Notice the sum of the columns must be 1. Our main goal is to show that
this tridiagonal matrix. Label with (an) ≡ (Tn(n−1))Nn=1, the lower diagonal, with

(bn) ≡ (Tnn)Nn=0 the main diagonal, and with (cn) ≡ (Tn(n+1))
N−1
n=0 the upper

diagonal. From our relations, we have

an =
(N − n)(N − n+ 1)

N(N − 1)
;

bn =

{
0 if n = 0,

2 n(N−n)
N(N−1) if n > 0;

cn =

{
0 if n = 0,
n(n+1)
N(N−1) if n > 0.

Our goal is to show that the components of the eigenvector of this matrix T
satisfy exponential relations up to some value, such as the approximately stable
point N/2. For example, we see that the overwhelming trend is for the probability
to increase when the number of points in our segment is below N/2, but we are
only interested in the case of when we have too many points (more than N/2). We
claim that past xN/2, the following relation is satisfied for some fixed d > 1:

dxk+1 ≤ xk.
We also assume the approximations that when N ≈ n, then 0 ≤ a << b << c,
but ak + bk + ck ≈ 1. We suppose the exponential relation holds and investigate
what constraints it leaves on our d. Notice from a general tridiagonal matrix, row
N gives

aNxN−1 + bNxN = xN =⇒ xN−1 = xN ·
1− bN
aN

.
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This condition along with our assumption of an exponential decaying sequence of
eigenvector components implies d ≤ 1−bN

aN
.

Generally, we begin with row k > N/2

akxk−1 + bkxk + ckxk+1 = xk,

and solving for xk−1:

xk−1 =
1

ak
[(1− bk)xk − ckxk+1] ≥ dxk,

so xk ≤ ck
1−bk−akd

xk+1. We will choose our d so that it is less than this coefficient
but greater than 1.

d ≥ ck
1− bk − akd

⇔ 0 ≥ d2 − 1− bk
ak

d+
ck
ak
.

Recall that 1− ak − bk ≈ ck, and let L = ck
ak

. Then we have

0 ≥ d2 − (L+ 1)d+ L = (d− L)(d− 1).

Notice L = ck
ak
>> 1. Because k ∈ (N/2, N ] as an integer, take d∗ = 1

2 + 1
2 minLk =

1
2 + min ck

2ak
. Such a quantity is only well defined if we impose the extra condition

that Lk = ck/ak > 1 for all k > N/2. This d∗ satisfies equations for all dk and
therefore admits d∗xk+1 ≤ xk, showing the distribution of eigenvector components
is exponentially decaying.

Theorem 2.7. The last half of the components of the eigenvector of a tridiagonal
matrix (an, bn, cn) ∈ MN×N (R) are exponentially decaying if n ≈ N implies 0 ≤
an << bn ≈ cn and that 1 ≈ an + bn + cn.

The approximations like 1 ≈ an + bn + cn refer to the following property

lim
N→∞

an + bn + cn = 1 uniformly, as n ≈ N.

For Burago’s calculations, we could construct the same tridiagonal matrix and label
it with an, bn, cn. Let B = (Bij) where Bij = Pr(j → i). The process of decreasing

in general has probability B(j−1)j = Pr(j → j − 1) = j(m−1)
mN and is valid for j > 0;

the probability of remaining constant is Bjj = Pr(j → j) = j+(N−j)(m−1)
mN and is

valid for all j; and the probability of increasing is B(j+1)j = Pr(j → j + 1) = N−j
mN

and is valid for j < N .

an =
N − n+ 1

mN
;

bn =
n+ (N − n)(m− 1)

mN
;

cn =
(n+ 1)(m− 1)

mN
.

Do Burago’s entries satisfy 0 ≤ a << b << c when n ≈ N? Actually, they are such
that 0 ≤ a << b ≈ c. This is alright, because in the previous general calculations
we never invoked b << c, just that a << c. Certainly ak + bk + ck ≈ 1 as we
wished. Therefore, we no longer need the explicit calculations of P0, P1, ..., etc. We
have showed that Pi satisfy exponential relations, and Burago’s Benford result is a
consequence.
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3. My Attempt at Skipping Linear Algebra Class

I want to generate a way to solve tridiagonal matrices. No explicit solution is
possible, but we can at least create an inductive process to solving a tridiagonal
matrix.

Theorem 3.1. Let X(n) = (ak, bk, ck)nk=1 with augmented matrix having all 1’s in
the final column. The solution xi = 1/βi, where

βn =
bnβn−1

βn−1 − an
,

and (β1, ..., βn−1) is the solution to X(n−1) = (ak, bk, ck)n−1k=1 with bn−1 replaced by

b′n−1 =
bn−1bn − ancn−1

bn − cn−1
.

Proof. Checking that the formula works for some X(2) is easy. Begin with X(n) =
(ak, bk, ck)nk=1 with all 1’s on the augmented column. Call X(n−1) = (ak, bk, ck)n−1k=1

with bn−1 replaced with b′n−1 as above. Then solve X(n−1) inductively to be a

diagonal matrix (βk)n−1k=1 . Then we replace in X(n) as follows

X(n) =

(
X(n−1) 0
0, ..., an bn

)
.

Subtracting the second to last row proportionally from the bottom row, we then
rescale the row so 1 is left in the augmented row, showing

βn =
bnβn−1

βn−1 − an
.

�

Now I will attempt to generalize our approach to proving the exponentially
decreasing property of last half of the components of the eigenvector of some pent-
diagonal matrix X(n) = (ak, bk, ck, dk, ek)nk=1. We wish to show that there exists a
µ > 1 such that k > N/2 implies xk ≥ µxk+1. We generally have the recurrence
relation

xk = akxk−2 + bkxk−1 + ckxk + dkxk+1 + ekxk+2.

After repeatedly solving for the xi with smallest index and invoking xi ≥ µxi+1,
then we obtain

0 ≥ akµ4 + bkµ
3 + (ck − 1)µ2 + dkµ+ ek ≡ P(µ).

The (ck − 1) term occurs because in the recurrence relation, we subtract xk from
both sides to decrement the coefficient on xk by 1. We will consider the possible
conditions that may arise, such as ak + bk + ck + dk + ek ≈ 1 when k ≈ n, and
perhaps ak << bk << ck << dk << ek. Our previous theorem forces bk << ck
and ck ≈ dk at least. Using the first condition, we can barely simplify the problem
to

µ4 +
bk
ak

(µ3 − 1) +
ck − 1

ak
(µ2 − 1) +

dk
ak

(µ− 1) +
1

ak
≤ 0.

However, we want to eventually factor this quadratic P. Without invoking the
general solution in radicals, I can make little progress. For example, I can prove
the following.

Proposition 3.2. P(µ) | (µ− 1).
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Proof. Assume P(µ) = (µ−1)(αµ3+βµ2+γµ+δ) for some α, β, γ, δ ∈ R. Obviously,
α = ak and δ = −ek. Then the coefficient on µ3 must satisfy

bk = −α+ β =⇒ β = ak + bk.

The coefficient on µ must satisfy

dk = −γ + δ =⇒ γ = −dk − ek.
Finally, we verify this solution works for the coefficient on µ2:

−β + γ = −ak − bk − dk − ek ≈ ck − 1.

By our estimate, this result holds for k ≈ n. Thus,

P(µ) = (µ− 1)(akµ
3 + (ak + bk)µ2 − (dk + ek)µ− ek).

�

I have tried testing divisibility by some L analogous to that from the tridiag-
onal case, but I cannot find a working one. Obviously, higher diagonal matrices
will require solving polynomials of degree one less than their number of nonzero
diagonals.

4. Generalized Calculations for Wealth Transfer

To generalize Burago’s calculations, I consider moving from value i − 2 to i (in
the general case). Although I don’t agree with her endpoint calculations, but I can
at least produce the same calculations for the general terms. below is a summary
of the results.

P (i− 2→ i) =
(n− i+ 2)(n− i+ 1)

n(n− 1)m2
.

P (i− 1→ i) =
(n− i+ 1)[2(n− 1)(m− 1) + (i− 1)]

n(n− 1)m2
.

P (i→ i) =
(n− 1)(n− i− 1)(m− 1)2 + 4i(n− i)(m− 1) + i(i− 1))

n(n− 1)m2
.

P (i+ 1→ i) =
2(i+ 1)(m− 1)[i+ (n− i+ 1)(m− 1)]

n(n− 1)m2
.

P (i+ 2→ i) =
(i+ 2)(i+ 1)(m− 1)2

n(n− 1)m2
.

I’m sure I could probably generalize this procedure for more large diagonal matrices.
Not. Enough. Time.


